تعداد نشریات | 43 |
تعداد شمارهها | 1,652 |
تعداد مقالات | 13,408 |
تعداد مشاهده مقاله | 30,252,926 |
تعداد دریافت فایل اصل مقاله | 12,089,465 |
On some generalization of the malnormal subgroups | ||
International Journal of Group Theory | ||
مقاله 3، دوره 9، شماره 1، خرداد 2020، صفحه 7-24 اصل مقاله (255.34 K) | ||
نوع مقاله: Ischia Group Theory 2018 | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2018.112124.1487 | ||
نویسندگان | ||
Leonid A Kurdachenko1؛ Nikolai Semko2؛ Igor Subbotin* 3 | ||
1National University of Dnipro | ||
2University of State Fiscal Service of Ukraine | ||
3Department of Mathematics and Natural Sciences, College of Letters and Sciences, National University, USA | ||
چکیده | ||
A subgroup $H$ of a group $G$ is called malonormal in $G$ if $H \cap H^x =\langle 1\rangle$ for every element $x \notin N_G(H)$. These subgroups are generalizations of malnormal subgroups. Every malnormal subgroup is malonormal, and every selfnormalizing malonormal subgroup is malnormal. Furthermore, every normal subgroup is malonormal. In this paper we obtain a description of finite and certain infinite groups, whose subgroups are malonormal. | ||
کلیدواژهها | ||
Malnormal Subgroups؛ Malonormal Subgroups؛ Frobenius Group؛ Locally Graded groups؛ Generalized Radical Groups | ||
مراجع | ||
[1] B. Baumslag, Generalized free products whose two-generator subgroups are free, J. London Math. Soc., 43 (1968) 601–606. [2] R. Baer, Situation der Untergruppen und Struktur der Gruppe, Sitz. Ber. Heidelberg Akad., 2 (1933) 12–17.
[3] Ya. Berkovich, Groups of prime power order, 1, Walter de Gruyter: Berlin-2008.
[4] S. N. Chernikov, Infinite nonabelian groups with an invariance condition for infinite nonabelian subgroups, Dokl. Akad. Nauk SSSR, 194 (1970) 1280–1283. [5] M. R. Dixon, L. A. Kurdachenko and I. Ya. Subbotin, Ranks of groups. The tools, characteristics and restrictions, Wiley, New York, 2017. [6] P. Flavell, A note on Frobenius groups, J. Algebra, 228 (2000) 367–376.
[7] L. Fuchs, Infinite abelian groups, 1, Academic Press, New York, 1970.
[8] D. Gorenstein, Finite groups, Chelsea Publ. Co., New York, 1980.
[9] P. Hall Finiteness conditions for soluble groups, Proc. London Math. Soc., 4 (1954) 419–436.
[10] P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc., 9 (1959) 595–622.
[11] P. Hall and C. R. Kulatilaka, A property of locally finite groups, J. London Math. Soc., 39 (1964) 235–239.
[12] P. De la Harpe and C. Weber, Malnormal subgroups and Frobenius groups: basics and examples, Confluentes Math., 6 (2014) 65–76. [13] M. I. Kargapolov, On a problem of O. Ju. midt, Sibirsk. Mat. Z., 4 (1963) 232–235.
[14] V. V. Kirichenko, L. A. Kurdachenko and I. Ya. Subbotin, Some related to pronormality subgroup families and the properties of a group, Algebra Discrete Math., 11 (2011) 75–108. [15] L. A. Kurdachenko, Artinian modules over group rings, Frontiers in Mathematics, Birkhuser Verlag, Basel, 2007.
[16] F. N. Liman, 2-groups with normal non-cyclic subgroups, Math. Notes, 4 (1968) 535–539.
[17] F. N. Liman, Periodic groups, whose abelian normal non-cyclic subgroups are invariant, In book “Groups with restrictions on subgroups”, Naukova Dumka, 1971 65–95. [18] A. Yu. Olshanskii, Infinite group with subgroups of prime orders, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980) 309–321. [19] D. J. S. Robinson, a. Russo and G. Vincenzi, On groups which contain no HNN-extension, Internat. J. Algebra Comput., 17 (2007) 1377–1387. | ||
آمار تعداد مشاهده مقاله: 443 تعداد دریافت فایل اصل مقاله: 433 |