تعداد نشریات | 43 |
تعداد شمارهها | 1,654 |
تعداد مقالات | 13,539 |
تعداد مشاهده مقاله | 31,052,370 |
تعداد دریافت فایل اصل مقاله | 12,217,844 |
Degree resistance distance of trees with some given parameters | ||
Transactions on Combinatorics | ||
مقاله 3، دوره 7، شماره 4، اسفند 2018، صفحه 11-24 اصل مقاله (825.5 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2018.108656.1538 | ||
نویسندگان | ||
Fangguo He* 1؛ Xinnong Jiang2 | ||
1College of Mathematics and Physics, Huanggang Normal University, Huanggang, China | ||
2College of Life Science and Techonolgy, Huazhong University of Science and Technology, Wuhan | ||
چکیده | ||
The degree resistance distance of a graph $G$ is defined as $D_R(G)=\sum_{i<j}(d(v_i)+d(v_j))R(v_i,v_j)$, where $d(v_i)$ is the degree of the vertex $v_i$, and $R(v_i,v_j)$ is the resistance distance between the vertices $v_i$ and $v_j$. Here we characterize the extremal graphs with respect to degree resistance distance among trees with given diameter, number of pendent vertices, independence number, covering number, and maximum degree, respectively. | ||
کلیدواژهها | ||
Trees؛ Degree resistance distance؛ Diameter؛ Covering number | ||
مراجع | ||
[1] P. Ali, S. Mukwembi and S. Munyira, Degree distance and vertex{connectivity, Discrete Appl. Math. , 161 (2013) 2802{2811. [2] C. Arauz, The Kirchhoff indexes of some comp osite networks, Discrete Appl. Math. , 160 (2012) 1429{1440. [3] B. Bollobas, Modern Graph Theory , Springer-Verlag, 1998. [4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications , American Elsevier Publishing Co., Inc., New York, 1976. [5] S. B Chen, Q. Chen, X. Cai and Z. Guo, Maximal Degree Resistance Distance of Unicyclic Graphs, MATCH Commun. Math. Comput. Chem. , 75 (2016) 157{168. [6] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. , 66 (2001) 211{249. [7] A. A. Dobrynin, I. Gutman, S. Klavzar and P. Zigert, Wiener index of hexagonal systems, Acta Appl. Math. , 72 (2002) 247{294. [8] A. A. Dobrynin and A. A. Ko chetova, Degree distance of a graph: a degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. , 34 (1994) 1082{1086. [9] P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, On the degree distance of a graph, Discrete Appl. Math., 157 (2009) 2773{2777. [10] J. F. Du, G. F. Su, J. H. Tu and I. Gutman, The degree resistance distance of cacti, Discrete Appl. Math. , 188 (2015) 16{24. [11] Z. B. Du and B. Zhou, The Estrada index of trees, Linear Algebra Appl. , 435 (2011) 2462{2467. [12] L. Feng, G. Yu, K. Xu and Z. Jiang, A note on the Kirchhoff index of bicyclic graphs, Ars Comb. , 114 (2014) 33{40. [13] I. Gutman, J. Rada and O. Araujo, The Wiener index of starlike trees and a related partial order, MATCH Commun. Math. Comput. Chem. , 42 (2000) 145{154. [14] I. Gutman, L. Feng and G. Yu, On the degree resistance distance of unicyclic graphs, Trans. Comb. , 1 no. 2 (2012) 27{40. [15] Q. Guo, H. Deng and D. Chen, The extremal Kirchhoff index of a class of unicyclic graphs, MATCH Commun. Math. Comput. Chem. , 61 (2009) 713{722. [16] F. Huang, X. l. Li and S. j. Wang, On Maximum Laplacian Estrada Indices of Trees with Some Given Parameters, MATCH Commun. Math. Comput. Chem. , 74 (2015) 419{429. [17] F. Huang, X. l. Li and S. j. Wang, On maximum Estrada indices of bipartite graphs with some given parameters, Linear Algebra Appl. , 465 (2015) 283{295. [18] A. Ilic, S. Klavzar and D. Stevanovic, Calculating the degree distance of partial hamming graphs, MATCH Commun. Math. Comput. Chem. , 63 (2010) 411{424. [19] A. Ilic, A Note on the Additive Degree Kirchhoff Index, MATCH Commun. Math. Comput. Chem. , 75 (2016) 223{226. [20] D. J. Klein, Resistance-distance sum rules, Croat. Chem. Acta. , 75 (2002) 633{649. [21] D. J. Klein and M. Randic, Resistance distance, J. Math. Chem. , 12 (1993) 81{95. [22] S. C. Li, Y. B. Song and H. H. Zhang, On the degree distance of unicyclic graphs with given matching numb er, Graphs Combin. , 31 (2015) 2261{2274. [23] J. B. Liu et al. On degree resistance distance of cacti, Discrete Appl. Math. , 203 (2016) 217{225. [24] M. H. Liu and B. L. Liu, A Survey on Recent Results of Variable Wiener Index, MATCH Commun. Math. Comput. Chem. , 69 (2013) 491{520. [25] J. L. Palacios, Upp er and lower b ounds for the additive degreeCKirchhoff index, MATCH Commun. Math. Comput. Chem. , 70 (2013) 651{655. [26] I. Tomescu, Prop erties of connected graphs having minimum degree distance, Discrete Math. , 309 (2009) 2745{2748. [27] I. Tomescu, Ordering connected graphs having small degree distances, Discrete Appl. Math. , 158 (2010) 1714{1717. [28] J. H. Tu, J. f. Du and G. f. Su, The unicyclic graphs with maximum degree resistance distance, Appl. Math. Comput., 268 (2015) 859{864. [29] H. Wiener, Structural determination of paraffin b oiling p oints, J. Am. Chem. Soc. , 69 (1947) 17{20. [30] W. H. Wang, Estrada Indices of the Trees with a Perfect Matching, MATCH Commun. Math. Comput. Chem. , 75 (2016) 373{383. [31] Y. Yang, X. Jiang, Unicyclic graphs with extremal Kirchhoff index, MATCH Commun. Math. Comput. Chem. , 60 (2008) 107{120. [32] Y. Yang, D.J. Klein, Resistance distance-based graph invariants of sub divisions and triangulations of graphs, Discrete Appl. Math. , 181 (2015) 260{274. [33] B. Zhou, N. Trina jstic, On resistance-distance and kirchhoff index, J. Math. Chem. , 46 (2009) 283{289. [34] H. Zhang, X. Jiang, Y. Yang, Bicyclic graphs with extremal Kirchhoff index, MATCH Commun. Math. Comput. Chem. , 61 (2009) 697{712. | ||
آمار تعداد مشاهده مقاله: 366 تعداد دریافت فایل اصل مقاله: 430 |