تعداد نشریات | 43 |
تعداد شمارهها | 1,682 |
تعداد مقالات | 13,775 |
تعداد مشاهده مقاله | 32,274,804 |
تعداد دریافت فایل اصل مقاله | 12,765,855 |
Recognition of the simple groups $PSL_2(q)$ by character degree graph and order | ||
International Journal of Group Theory | ||
مقاله 11، دوره 8، شماره 2، شهریور 2019، صفحه 41-46 اصل مقاله (193.8 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2017.103226.1424 | ||
نویسندگان | ||
Zeinab Akhlaghi1؛ Maryam Khatami* ؛ Behrooz Khosravi2 | ||
1Faculty of Mathematics and Computer science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran | ||
2Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 15914 Tehran, Iran | ||
چکیده | ||
Let $G$ be a finite group, and $Irr(G)$ be the set of complex irreducible characters of $G$. Let $\rho(G)$ be the set of prime divisors of character degrees of $G$. The character degree graph of $G$, which is denoted by $\Delta(G)$, is a simple graph with vertex set $\rho(G)$, and we join two vertices $r$ and $s$ by an edge if there exists a character degree of $G$ divisible by $rs$. In this paper, we prove that if $G$ is a finite group such that $\Delta(G)=\Delta(PSL_2(q))$ and $|G|=|PSL_2(q)|$, then $G\cong PSL_2(q)$. | ||
کلیدواژهها | ||
character degree graph؛ simple group؛ characterization | ||
مراجع | ||
[1] B. Hupp ert, Endliche Grupp en I, Die Grund lehren der Mathematischen Wissenschaften , Springer-Verlag, Berlin-New York, 1967. [2] B. Hupp ert, Character Theory of Finite Groups , De Gruyter Exp ositions in Mathematics, 25 , Walter de Gruyter Co., Berlin, (1998). [3] I. M. Isaacs, Character theory of nite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. [4] B. Khosravi, B. Khosravi and B. Khosravi, Recognition of PSL(2 ; p ) by order and some information on its character degrees where p is a prime, Monatsh. Math. , 175 (2014) 277{282. [5] B. Khosravi, B. Khosravi, B. Khosravi and Z. Momen, Recognition by character degree graph and order of the simple groups of order less than 6000, Miskolc Math. Notes , 15 (2014) 537{544. [6] B. Khosravi, B. Khosravi, B. Khosravi and Z. Momen, Recognition of the simple group PSL(2 ; p 2 ) by character degree graph and order, Monatsh. Math. , 178 (2015) 251{257. [7] M. L. Lewis, An overview of graphs asso ciated with character degrees and conjugacy class sizes in nite groups, Rocky Mt. J. Math. , 38 (2008) 175{211. [8] M. L. Lewis and J. K. McVey, Character degree graphs of automorphism groups of characteristically simple groups, J. Group Theory, 12 (2009) 387{391. [9] O. Manz, R. Staszewski and W. Willems, On the numb er of comp onents of a graph related to character degrees, Proc. Amer. Math. Soc. , 103 (1988) 31{37 . [10] A. Moreto and P. H. Tiep, Prime divisors of character degrees, J. Group Theory , 11 341-356 (2008). [11] The GAP Group, GAP - Groups, Algorithms and Programming, Vers. 4.4.12 (2008), http://www.gap-system.org . [12] H. P. Tong-Viet, Groups whose prime graphs have no triangles, J. Algebra , 378 (2013) 196{206. [13] D. L. White, Character degrees of extensions of PSL 2 ( q ) and SL 2 ( q ), J. Group Theory , 16 (2013) 1{33. [14] D. L. White, Degree graphs of simple groups, Rocky Mountain J. Math. , 39 (2009) 1713{1739. [15] K. Zsigmondy, Zur theorie der p otenzreste, Monatsh. Math. Phys. , 3 (1892) 265{284. | ||
آمار تعداد مشاهده مقاله: 630 تعداد دریافت فایل اصل مقاله: 801 |