تعداد نشریات | 43 |
تعداد شمارهها | 1,682 |
تعداد مقالات | 13,758 |
تعداد مشاهده مقاله | 32,155,778 |
تعداد دریافت فایل اصل مقاله | 12,731,368 |
Groups with all subgroups permutable or soluble | ||
International Journal of Group Theory | ||
مقاله 4، دوره 2، شماره 1، خرداد 2013، صفحه 37-43 اصل مقاله (382.58 K) | ||
نوع مقاله: Ischia Group Theory 2012 | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2013.2008 | ||
نویسندگان | ||
Martyn Dixon* 1؛ Zekeriya Karatas2 | ||
1University of Alabama | ||
2University of Georgia | ||
چکیده | ||
In this paper, we consider locally graded groups in which every non-permutable subgroup is soluble of bounded derived length. | ||
کلیدواژهها | ||
permutable؛ soluble؛ locally graded | ||
مراجع | ||
A.~O. Asar (2000) Locally nilpotent $p$-groups whose proper subgroups are hypercentral or nilpotent-by-{C}hernikov J. London Math. Soc. (2) 61, 412-422
B.~Bruno and R.~E. Phillips (1981) Groups with restricted nonnormal subgroups Math. Z. 176 (2), 199-221
R.~Dedekind (1897) {\"{U}}ber {G}ruppen deren s{\"{a}}mtliche {T}eiler
{N}ormalteiler sind Math. Ann. 48, 548-561
M.~R. Dixon and M.~J. Evans (1999) Groups with the minimum condition on insoluble subgroups Arch. Math. (Basel) 72, 241-251
K.~Ersoy, A.~Tortora, and M.~Tota On Groups with all subgroups subnormal or soluble of bounded derived length manuscript.
M.~De Falco, F.~De Giovanni, C.~Musella, and R.~Schmidt (2003) Groups in which every non-abelian subgroup is permutable Groups in which every non-abelian subgroup is permutable 52 (1), 70-76
S.~Franciosi, F.~de~Giovanni, and M.~L. Newell (2000) Groups with polycyclic non-normal subgroups Algebra Colloq. 7 (1), 33-42
K.~Iwasawa (1943) On the structure of infinite {$M$}-groups Jap. J. Math. 18, 709-728
J.~C. Lennox and D.~J.~S. Robinson (2004) The {T}heory of {I}nfinite {S}oluble
{G}roups Oxford Mathematical Monographs, Oxford University Press, Oxford
J.~C. Lennox and S.~E. Stonehewer (1987) Subnormal {S}ubgroups of {G}roups Oxford {U}niversity {P}ress, Oxford
P.~Longobardi, M.~Maj, and H.~Smith (1995) A note on locally graded groups Rend. Sem. Mat. Univ. Padova 94, 275-277
W.~M{\"o}hres (1990) Aufl\"osbarkeit von {G}ruppen, deren {U}ntergruppen alle subnormal sind Arch. Math. (Basel) 54 (3), 232-235
A.~Yu Ol'shanskii (1991) Geometry of {D}efining {R}elations in {G}roups Mathematics and its {A}pplications, Kluwer {A}cademic {P}ublishers, Dordrecht 70
D.~J.~S. Robinson (1972) Finiteness {C}onditions and {G}eneralized {S}oluble
{G}roups Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, Heidelberg, New York, Band 62 and 63 1and 2
G.~M. Romalis and N.~F. Sesekin (1966) Metahamiltonian groups Ural. Gos.
Univ. Mat. Zap. 5 (3), 101-106
\bysame (1969/1970) The metahamiltonian groups. {III} Ural. Gos. Univ. Mat. Zap. 7 (3), 195-199
O.~J. Schmidt (1924) Groups all of whose subgroups are nilpotent Mat. Sb., (Russian) 31, 366-372
R.~Schmidt (1994) Subgroup {L}attices of {G}roups De Gruyter expositions in
mathematics, {d}e Gruyter, Berlin, New York 14
N.~F. Sesekin and G.~M. Romalis (1968) Metahamiltonian groups. {II} Ural.
Gos. Univ. Mat. Zap. 6 (3), 50-52
H.~Smith (2001) Groups with all non-nilpotent subgroups subnormal Topics in
infinite groups, Quad. Mat., Dept. Math., Seconda Univ. Napoli,
Caserta 8, 309-326
\bysame (2001) Torsion-free groups with all non-nilpotent subgroups subnormal Topics in infinite groups, Quad. Mat., Dept. Math., Seconda Univ.
Napoli, Caserta 8, 297-308
S.~E. Stonehewer (1972) Permutable subgroups of infinite groups Math. Z. 125, 1-16
J.~G. Thompson (1968) Nonsolvable finite groups all of whose local subgroups
are solvable Bull. Amer. Math. Soc. 74, 383-437
| ||
آمار تعداد مشاهده مقاله: 4,708 تعداد دریافت فایل اصل مقاله: 3,898 |