تعداد نشریات | 43 |
تعداد شمارهها | 1,637 |
تعداد مقالات | 13,304 |
تعداد مشاهده مقاله | 29,858,645 |
تعداد دریافت فایل اصل مقاله | 11,940,557 |
تاثیر ضد باکتریایی نانو ذرات نقره همراه با آنتی بیوتیکهای مهار کننده سنتز پروتئین بر استافیلوکوکوس اورئوس جداشده از موارد ورم پستان گاو | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
زیست شناسی میکروبی | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مقاله 3، دوره 2، شماره 8، بهمن 1392، صفحه 15-22 اصل مقاله (321.9 K) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
نویسندگان | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
جلال کاظمی1؛ ملاحت احمدی* 2؛ حبیب دستمالچی ساعی3؛ مسعود ادیب حسامی4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1کارشناسی ارشد باکتری شناسی، دانشگاه ارومیه، ایران | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2دانشیار میکروبیولوژی، دانشگاه ارومیه، ایران | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3استادیار میکروبیولوژی، دانشگاه ارومیه، ایران | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4دانشجوی دکتری تخصصی میکروبیولوژی، دانشگاه ارومیه، ایران | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
چکیده | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مقدمه : استافیلوکوکوس اورئوس یک باکتری بیماری زا در نشخوارکنندگان شیروار است که در گله های سالم یافت شده و می تواند علت اصلی ورم پستان باشد. برنامههای کنترلی متعددی به منظور مبارزه با این مشکل به کار رفته اما همیشه کار آمد نبوده است. در بیشتر کشورها، مقاومت آنتی بیوتیکی بسیار رایج شده است. نانو ذرات نقره فعالیت ضد میکروبی را علیه استافیلوکوکوس اورئوس نشان داده اند. در مطالعه حاضر، تاثیر نانو ذرات نقره همراه با آنتیبیوتیکهای موثر بر سنتز پروتئین، بر روی استافیلوکوکوس اورئوس های جدا شده از ورم پستان گاو بررسی شده است. مواد و روش ها: تعداد 311 نمونه شیر از دامداری جمعآوری شد. هر نمونه شیر بر روی محیط مانیتول سالت آگار کشت و انکوبه شد. تعداد 72 جدایه استافیلوکوکوس اورئوس از نمونههای شیر ورم پستان گاوی جدا شد. استخراج DNA استافیلوکوکوس اورئوس طبق دستور شرکت سازنده کیت خالص سازی انجام شد. 58 جدایه استافیلوکوکوس اورئوس به وسیله آزمایشهای بیوشیمیایی و تعیین ژن nuc تایید شدند. حداقل غلظت مهارکنندگی رشد و حداقل غلظت کشندگی رشد برای نانو ذرات نقره و نانو ذرات نقره همراه با آنتیبیوتیک در مورد 50 جدایه تعیین شد. نتایج: مقاومت جدایههای استافیلوکوکوس اورئوس به اریترومایسین، جنتامایسین، استرپتومایسین و داکسی سایکلین به ترتیب 100، 22، 100 و 8 درصد بودند. 8 در صد جدایهها نسبت به غلظت 25 میکروگرم در میلی لیتر نانوذرات نقره حساسیت داشتند. رشد 98 درصد نمونهها در غلظتهای مابین 50 تا 100 میکروگرم در میلی لیتر مهار شدند. بحث و نتیجه گیری: مطالعه حاضر پیشنهاد میکند که آنتیبیوتیکهای مهار کننده سنتز پروتئین همراه با نانو ذرات نقره در اغلب نمونهها دارای اثر سینرژیستی هستند. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
کلیدواژهها | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ورم پستان؛ استافیلوکوکوس اورئوس؛ نانو ذرات نقره؛ آنتی بیوتیک | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
اصل مقاله | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction Staphylococcus aureus is an opportunistic pathogen in dairy ruminants where it is found in healthy carriage and can be a major cause of mastitis (1). Mastitis in dairy cattle is a persistent, inflammatory reaction of the udder tissue. Fatal mammary gland infection is common potential (2). This disease costs the US dairy industry about 1.7 to 2 billion dollar each year (3). Reported cure rates for S. aureus mastitis vary considerably. The probability of cure depends on cow, pathogen, and treatment factors (4). Various mastitis control programs have been used to combat the problem but have not always been efficient (5). In most countries, antibiotic resistance is common extremely. Combination therapy with penicillin and gentamicin may be used to treat serious infections; its use is controversial because of the high risk of damage to the kidneys (6). Nanoparticles are sized between 1-100 nm (7). High surface area to volume ratios and unique chemicophysical properties of various nanomaterials are believed to contribute to effective antimicrobial activities (8). Metal nanoparticles, which have a high specific surface area and a high fraction of surface atoms, have been studied extensively due to their unique physicochemical characteristics such as catalytic activity, optical properties, electronic properties, magnetic properties, and antimicrobial activity (9). Antimicrobial mechanisms of nanomaterials include: 1- photocatalytic production of reactive oxygen species (ROS) that damage cellular and viral components, 2-compromising the bacterial cell wall/membrane, 3-interruption of energy transduction, and 4- inhibition of enzyme activity and DNA synthesis (10-11). Silver nanoparticles (AgNPs) have recently been synthesized and shown to exhibit antimicrobial activity against several species of bacteria including S. aureus (12). The antimicrobial activity of silver particles is influenced by the dimension of the particles, with smaller particles showing greater antimicrobial effect. Bacteria treated by metals including silver do not acquire resistance to the metals (13). The MIC (minimum inhibitory concentration) of AgNPs is one order lower than the one of silver ions (14). Therefore, the bactericidal metals have advantages over the conventional antibiotics which often cause the selection of antibiotic-resistant microorganism. The use of modern technology and the therapeutic properties of silver nanoparticles have requirements that had already been proven and it seems necessary. In the present study, the effect of silver nanoparticles has been investigated along with antibiotics of operation on protein bacterial synthesis.
Material and methods Sampling
For detection of clinical and subclinical mastitis, California mastitis test (CMT) carried out. Three hundred and eleven milk samples were collected from the cow farms of Tabriz and Urmia, Iran. The breasts of cows were washed and disinfected by 70% alcohol and then were dried using sterile cotton and disposable towel. First milking of the teat was discarded and 10 ml of milk were collected in a sterile BHI bottle. All samples were kept at 4°C and transported immediately to the lab for latter examination.
Isolation and identification of S. aureus Each milk sample (100 μl) was cultured on the surface of mannitol salt agar (Merck, Germany) and was incubated at 37°C for 24 h. Colonies suspected as S. aureus were selected and transferred to 5% sheep blood agar (Difco, USA). Gram stain, culture characteristics, and coagulase test using fresh rabbit plasma (tube method) were used for the presumptive identification of all isolates (15). Out of the 311 bovine mastitis milk samples 72 isolates of S. aureus were studied.
Molecular diagnosis of S. aureus S. aureusDNA extracted from the 24-hour culture of S. aureus in BHI medium according to DNA purification kit (Fermentas, Germany) manufacturer protocol. To accurately identify of S. aureus, nuc gene was amplified by PCR (16). The primers of Susceptibility test antibiotics Bacterial samples were incubated in Mueller Hinton broth medium (Merck, Germany) and were cultured at 37°C for 24 h. After growth, the sampleswere compared with a turbidity tube of 0.5 McFarland (number of bacteria 108-109). The 48 wells of micro plate were considered with four wells each in one row. To determine the pattern of isolates resistance against Erythromycin, Gentamicin, Streptomycin and Doxycycline, Disk Agar Diffusion method was carried out on Muller Hinton Agar and results were reported as resistance percentage (17).
Measurement of minimum inhibitory concentration and minimum bactericidal concentration for silver nanoparticles Eight dilutions (0, 25, 50, 60, 70, 80, 90 and 100 µg/ml) of silver nanoparticles with 97 nm in diameter (Malvern instrument, UK) were prepared using saline normal. In each well, 900 µl of bacterial suspension was added and then the 100 µl of different concentrations of silver nanoparticles were added in the wells. To establish the antimicrobial activity of silver nanoparticles on the bacterial growth, the minimum inhibitory concentration and minimum bactericidal concentration of silver nanoparticles were determined for S. aureus using optical density of the bacterial culture solution containing different concentration of silver nanoparticles after 24h. All of the experiments were triplicated, on three different days.
Measurement of MIC and MBC for silver nanoparticles along with antibiotics To determine the MIC and MBC of silver nanoparticles in combination with antibiotics, 50 µl of each antibiotic and 50 µl of different concentrations of silver nanoparticles were added into each well containing 30 µl Hinton medium (Merck, Germany) then incubated for 24 h at 37°C (18). Finally, the rate of bacterial growth on culture plates containing bacterial suspensions with silver nanoparticles and various antibiotics were tested and the MIC and MBC of silver nanoparticles were determined along with antibiotics.
Results
Molecular Identification of S. aureus isolates A total of 311 milk samples were cultured, 72 S. aureus isolates identified using cultural and biochemical tests. Specific molecular diagnosis carried out by nuc gene amplification. The primers amplified the expected size of 279 bp in 58 S. aureus isolates which 50 of them used in the next stages of the research. (Fig. 1)
Fig 1- electrophoresis of PCR products of nuc gene. M: 100 bp DNA ladder (fermentas-Germany) 1: positive control (S. aureus ATCC 29213). 2: Negative control (reaction without DNA). 3-9: PCR products of the expected size of 279 bp.
Antibiotic Resistance All of 50 isolates cultured in a concentration of 50µg/ml of the operative antibiotics separately. The resistance of S. aureus isolates against erythromycin, gentamicin, streptomycin and doxycycline were 100, 22, 100 and 8%, respectively. The MIC and MBC were determined along with silver nanoparticles only in resistant isolates.
Measurement of MIC and MBC In this study, 50 isolates of S. aureus with eight different dilutions of silver nanoparticles were examined; the growth of four isolates was inhibited at 25 µg/ml concentration of silver nanoparticles, which was recorded as MBC. Eight percent of all isolates were sensitive to 25 µg/ml concentration of silver nanoparticles. Nighty eight percent of the samples at concentrations between 50-100 µg/ml were inhibited. The sensitive isolates to 25 µg/ml silver nanoparticles in next tests were excluded. The results of MIC and MBC for silver nanoparticles and antibiotics along with silver nanoparticles on 46 remained isolates are shown in Table 1. All tests performed in triplicate.
Table 1- Results of interaction of silver nanoparticles and antibiotics.
S: Synergistic, A: Antagonist, I: Inactive *: In the samples that were susceptible to antibiotics, MIC and MBC of antibiotics along with silver nanoparticles were not investigated.
Discussion and conclusion
More noticeably, the increase in bacterial resistance to antimicrobial agents poses a serious problem in the treatment of infectious diseases as well as in epidemiological practice. Increasingly new bacterial strains have emerged with dangerous levels of resistance, including Gram-positive and Gram-negative bacteria. Dealing with bacterial resistance requires precautions that can lead to the prevention of the emergence and spread of multiresistant bacterial strains and the development of new antimicrobial substances. The results of this study cleared that the infection rate of cows with S. aureus is about16.07%. The high rate of resistance was to Streptomycin and erythromycin. All isolates showed high sensitivity to doxycycline and gentamicin. In a recent study, minimum inhibitory concentration of silver nanoparticles on S. aureus was 100 μg/ml, which corresponds to the current study (19). In the study of Shahverdi et al, effect of silver nanoparticles and Fourteen antibiotics on S. aureus and E. coli investigated using disk diffusion method. The effect of penicillin G, amoxicillin, erythromycin, clindamycin and vancomycin antibiotics on S. aureus was better than the rest. Erythromycin on S. aureus was the most effective than other antibiotics (20). In the present study the antibiotics which effect on 30S ribosomal subunit (doxycycline and gentamicin) had a higher synergistic effect on S. aureus in combination with silver nanoparticles. The silver nanoparticles first attach to the surface of the cell membrane and penetrate further inside the bacteria. The cytoplasm destroys as the Ag NPs penetrated the cell (21). So antibiotics that affect on protein translation may influence on ribosomes and stop them, resulting in the inhibition of bacterial cell growth and multiplication. Streptidine ring of Streptomycin (as one of the major drug rings) causes of neutralizing effect on antibacterial silver nanoparticles (22). In this study, erythromycin (effective on 50S ribosomal subunit) showed synergistic effect with silver nanoparticles that was concord with studies of Fayaz et al and shahverdi et al (23-24). Silver nanoparticles have been widely used for development of biological and pharmaceutical processes, products, and applications such as coating material for medical devices, orthopedic or dental graft materials, topical aids for wound repair, clothing, underwear and socks, textile products, and even washing machines (25). It is well known that silver, whether in an ionic or nanoparticle form, is highly toxic to microorganisms (26). The synergistic effect of silver nanoparticles under the influence of various factors such as particle size, dose and duration of use, shape, temperature, and pH dependent, few studies have investigated the role of synergistic effects of silver nanoparticles along with antibiotics. Increasingly new bacterial strains have emerged with dangerous levels of resistance, including S. aureus. Dealing with bacterial resistance requires precautions that can lead to the prevention of the emergence and spread of multiresistant bacterial strains and the development of new antimicrobial substances. The excellent antibacterial activity against the S. aureus bacterium even at a low silver loading makes silver nanoparticles very ideal for a highly cost-effective antimicrobial solution with long-lasting effect in green industrial applications (27). Present study suggests that antibiotics which can inhibit protein synthesis have significant synergistic effect along with silver nanoparticles. This research provides helpful insight into the development of new antimicrobial agents. To elucidate the mechanism of this synergistic effect, more elaborate experimental evidence will be needed. Using silver nanoparticles with different shapes and sizes, an affordable way to increase the antimicrobial effect, but it is essential to have an attention on its toxicity in eukaryotic cells. Thus study of the toxicity, characteristics and mechanisms of effect of silver nanoparticles on the bacteria is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
مراجع | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
References (1) Pereiraa U, Oliveiraa D, Mesquitaa L. Efficacy of Staphylococcus aureus vaccines for bovine mastitis: A systematic review. Vet Mic 2011; 148 (2): 117-24. (2) Syring C, Boss R, Reist M. Bovine mastitis: The diagnostic properties of a PCR-based assay to monitor the Staphylococcus aureus genotype B status of a herd, using bulk tank milk. J Dairy Sci 2012; 95 (3):3674-82. (3) Jones GM, Bailey TL. Understanding the Basics of Mastitis. Virginia: Cooperative Extension; 2010. (4) Roy JP, Keefe G. Systematic Review: What is the Best Antibiotic Treatment for Staphylococcus aureus Intramammary Infection of Lactating Cows in North America?. Vet Clin 2012; 28 (5):39-50. (5) Capurro A, Aspan A, Ericsson H. Identification of potential sources of Staphylococcus aureus in herds with mastitis problems. J Dairy Sci 2010; 93: 180-91. (6) Cosgrove SE, Vigliani GA, Campion M. Initial low‐dose gentamicin for Staphylococcus aureus bacteremia and endocarditis is nephrotoxic. Clin Infect Dis 2009; 48 (4): 713–21. (7) Kim KJ, Sung WS, Moon SK. Antifungal effect of silver nanoparticles on dermatophytes. J Micr Bio 2008; 18 (3): 1482-84. (8) Muhling A, Bradford JW, Readman PJ. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Enviro Res 2009; 68 (2): 278-83. (9) Sadeghi B, Jamali M, Kia SH. Synthesis and characterization of silver nanoparticles for antibacterial activity. Int J Nano Dim 2010; 2 (5): 119-24. (10) Huang X, Zheng D, Yan G. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 2008; 24 (3): 4140–4. (11) Brett D W. A discussion of silver as an antimicrobial agent: alleviating the confusion. OstoWouMana 2006; 52 (2): 34-41. (12) Dung T, Buu N, Quang D. Synthesis of nanosilver particles by reverse micelle method and study of their bactericidal properties. J Phys 2009; 187 (6):1-8. (13) Yan J, Cheng J. Nanosilver-containing antibacterial and antifungal granules and methods for preparing and using the same. Pat App Pub 2002; 14 (4): 33-8. (14) Zhijun M, Huijiao J, Dezhi T. Silver nanoparticles decorated, flexible SiO2 nanofibers with long-term antibacterial effect as reusable wound cover. Physi chem Eng2011; 387 (14): 57- 64. (15) Boerlin P, Kuhnert P, Hussy D, Schaellibaum M. Methods for Identification of Staphylococcus aureus Isolates in Cases of Bovine Mastitis. J Cli Mic 2003; 12 (3): 767–71. (16) Yang Y, Xudong S, Yao-wu Y. Detection of Staphylococcus aureus in Dairy Products by Polymerase Chain Reaction. Agri Sci 2007; 6 (3): 857-62. (17) Gokulakrishnan R, Ravikumar S, Anandha R. In vitro antibacterial potential of metal oxide nanoparticles against antibiotic resistant bacterial pathogens. Asi Pac J Trop Dis 2012; 2 (3): 411-13. (18) Sasidharan S, Prema B, Yoga L. Antimicrobial drug resistance of Staphylococcus aureus in dairy products. Asi Pac J Tro Bio 2011; 1: 130-2. (19) Kim SH, Lee HS, Ryu DS. Antibacterial Activity of Silver nanoparticles Against Staphylococcus aureus and Escherichia coli. Kor J Micr Bio 2011; 39: 77-85. (20) Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed 2007; 3 (2): 168-71. (21) Anh TL, Le TT, Phuong DT. Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Mat Sci Eng 2010; 30: 910–16. (22) Ahearn DG, May LL, Gabriel MM. Adherence of organisms to silver coated surface. J Ind Microbiol 1995; 15: 372-6. (23) Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed 2007; 3 (2): 168-71. (24) Fayaz AM, Balaji K, Girilal M. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram negative bacteria. Nanomed 2010; 6: 103 -9. (25) Dibrov P, Dzioba J, Gosink K. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Anti Agen Chem 2002; 46: 2668-70. (26) Navarro E, Piccapietra F, Wagner B. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Envir Sci Tech 2008; 42: 8959-64. (27) Huh AJ, Kwon YJ. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Cont Rel 2011; 156: 128-45. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
آمار تعداد مشاهده مقاله: 1,579 تعداد دریافت فایل اصل مقاله: 959 |