تعداد نشریات | 43 |
تعداد شمارهها | 1,638 |
تعداد مقالات | 13,319 |
تعداد مشاهده مقاله | 29,878,289 |
تعداد دریافت فایل اصل مقاله | 11,947,245 |
ارتباط گلاکونیتزایی و کلسیتی شدن با تغییرات نسبی سطح آب دریا در رسوبات سیلیسی آواری- کربناته سازند آیتامیر (کرتاسه میانی)، حوضه کپه داغ | ||
پژوهش های چینه نگاری و رسوب شناسی | ||
مقاله 2، دوره 28، شماره 3، آبان 1391، صفحه 19-36 اصل مقاله (1.74 M) | ||
نویسندگان | ||
محمود شرفی* 1؛ اسدا... محبوبی2؛ سید رضا موسوی حرمی2 | ||
1دانشجوی دکتری، گروه زمین شناسی دانشگاه فردوسی مشهد | ||
2استاد، گروه زمین شناسی دانشگاه فردوسی مشهد | ||
چکیده | ||
دو فرآیند دیاژنزی گلاکونیتی شدن و تشکیل سیمان کلسیتی و ارتباط آنها با تغییرات سطح آب دریا در رسوبات سیلیسی آواری- کربناته سازند آیتامیر (آلبین- سنومانین) در حوضه کپه داغ مورد بررسی قرار گرفته است. واحد ماسه سنگ تحتانی، شامل تناوبی عمدتاً از ماسه سنگ و بین لایههای شیل- آهک و واحد شیل فوقانی، دو بخش عمده رسوبات این سازند را تشکیل میدهند. ماسه سنگهای واحد تحتانی از نظر ترکیب و ارتباط آنها با تغییرات سطح آب دریا به دو دسته رخسارههای پیشرونده و پسرونده تقسیم میشوند و بر این اساس، مسیرهای دیاژنتیکی مختلفی را نشان میدهند. در رخسارههای پیشرونده پوستههای فسیلی تجمع یافتهاند که با پیشرفت دیاژنز تحت سیمانی شدن وسیع قرار گرفته و در طی مراحل دفن حداقل فشردگی را تحمل کردهاند. در ماسه سنگهای پسرونده که دارای مقادیر کمتری پوستههای فسیلی هستند سیمان کلسیتی به میزان محدود مشاهده میشود و فرآیند فشردگی تأثیر بیشتری داشته است. سیمان کربناته و گلاکونی در سازند آیتامیر در دسته رخسارههای پیشرونده (TST) و به خصوص در زیر سطح حداکثر سیلابی (MFS) و در زیر سطح پیشروی (TS) مشاهده میشوند. در صورتی که در رسوبات دسته رخسارههای پسرونده (HST) اساساً مقادیر بسیار کمتری سیمان کلسیتی و گلاکونی وجود دارد. علاوه بر این دسته رخسارههای پیشرونده و سطح حداکثر سیلابی با گلاکونیتهای رسیده و خیلی رسیده مشخص است. | ||
کلیدواژهها | ||
سازند آیتامیر؛ دیاژنز؛ گلاکونیتی شدن؛ سطح آب دریا؛ رخسارههای پیشرونده؛ رخسارههای پسرونده | ||
مراجع | ||
1- افشار حرب، ع.، 1373، زمین شناسی کپه داغ: سازمان زمین شناسی کشور، طرح تدوین کتاب، 275 صفحه. 2- آدابی، م.ح.، و ر.، عباسی، 1388، بررسی تاریخچه دیاژنتیکی سازند داریان براساس مطالعات پتروگرافی و ژئوشیمیایی در کوه سیاه (شمال شرق شیراز) و چاه شماره 1 سبز پوشان: مجله علوم دانشگاه تهران، شماره 35، ص 53-75. 3- شرفی، م.، 1388، چینه نگاری سکانسی و تفسیر تاریخچه رسوب گذاری سازند آیتامیر در شمال غرب شیروان و روستای بی بهره: پایان نامه کارشناسی ارشد، دانشگاه فردوسی مشهد، 307 ص. 4- شرفی، م.، م.، عاشوری، ا.، محبوبی، ر.، موسوی حرمی و م.، نجفی، 1388، چینه نگاری سکانسی سازند آیتامیر (آلبین- سنومانین) در ناودیس های شیخ و بی بهره غرب حوضه رسوبی کپه داغ: مجله علوم دانشگاه تهران شماره 35، ص 201-211. 5- شرفی، م.، ا.، محبوبی، ر.، موسوی حرمی و م.، نجفی، 1390، کاربرد لایه های پرفسیل در تفسیر چینه نگاری سکانسی سازند آیتامیر در ناودیس های شیخ و بی بهره- باختر کپه داغ: فصلنامه زمین شناسی ایران شماره 17، ص 31-47. 6- Alavi, M., H., Vaziri, K., Seyed-Emami and Y., Lasemi, 1997, The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin: Geological Society America Bulletin, v. 109; p. 1563-1575 7- Amorosi, A., 1995, Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences: Journal of Sedimentary Research, v. 65, p. 419-425. 8- Amorosi, A., 1997, Detecting compositional, spatial and temporal attributes of glaucony: a tool for provenance research: Sedimentary Geology, v. 109, p. 135-153. 9- Amorosia, A., I., Sammartinoa, and F., Tateo, 2007, Evolution patterns of glaucony maturity: A mineralogical and geochemical approach, Deep-Sea Research II, v. 54; p. 1364-1374. 10- Chafetz, H.S., 2007, Paragenesis of the Morgan Creek Limestone, Late Cambrian, central Texas: Constraints on the formation of glauconite, Deep-Sea Research II, v. 54, p. 1350-1363. 11- Chang, S.S., Y.H., Shau M.K., Wang, C.T., Ku and P.N. Chiang, 2008, Mineralogy and occurrence of glauconite in central Taiwan: Applied Clay Science, v. 42, p. 74-80. 12- El-ghali , M.A.K., H.,Mansurbeg, S., Morad , I., Al-Aasm and K., Ramseyer, 2006, Distribution of diagenetic alterations in glaciogenic sandstones within a depositional facies and sequence stratigraphic framework: Evidence from the Upper Ordovician of the Murzuq Basin, SW Libya, Sedimentary Geology, v. 190, p. 323-351. 13- El-ghali, M.A.K., H., Mansurbeg, S., Morad, I., Al-Aasm, K., Ramseyer, 2009, Distribution of diagenetic alterations in glaciogenic sandstones within a depositional facies and sequence stratigraphic framework: Evidence from the Upper Ordovician of the Murzuq Basin, SW Libya: Sedimentary Geology, v. 190, p. 323-351. 14- Golonka, J., 2004, Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic: Tectonophysics, v. 381, p. 235–273. 15- Hadavi, H., and A., Poursmaiel, 2005, Investigation of the boundaries of Tirgan, Sarcheshmeh, Sanganeh, Aitamir and Abderaz Formations based on nannoplaktones in the Mashhad-Sarakhs Road (in Persian): Geological Society of Iran, v. 11, p. 1873-1881. 16- Halal, O.A., 2008, Diagenesis and Reservoir-Quality Evolution of Paralic, Shallow BMarine and Fluvio-lacustrine Deposits, Links to Depositional Facies and Sequence Stratigraphy, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, v. 448, 65 pp. 17- Harris, L.C. and B.M., Whiting, 2000, Sequence-stratigraphic significance of Miocene to Pliocene glauconite-rich layers, on- and offshore of the US Mid-Atlantic margin: Sedimentary Geology, v. 134, p. 129-147. 18- Hesselbo, S.P., J.M., Huggett, 2001, Glaucony in ocean margin sequence stratigraphy (OligoceneePliocene, offshore New Jersey, U.S.A.; ODP LEG 174A): Journal of Sedimentary Research, v. 71, p. 599-607. 19- Kelly, J.C. and J.A., Webb, 1999, The genesis of glaucony in the Oligo–Miocene Torquay group, southeastern Australia: petrographic and geochemical evidence: Sedimentary Geology, v. 125, p. 99-114. 20- Ketzer, J. M., M., Holz, S., Morad, and I. S., Al-Aasm, 2003, Sequence stratigraphic distribution of diagenetic alterations in coal-bearing, paralic sandstones: evidence from the Rio Bonito Formation (early Permian), southern Brazil: Sedimentology, v. 50, p. 855-877. 21- Kim, J.C., Y., Lee, and K., Hisada, 2007, Depositional and compositional controls on sandstone diagenesis, the Tetori Group (Middle Jurassic–Early Cretaceous), central Japan Sedimentary Geology, v. 195, p. 183-202. 22- Kim, J.C., Y., Lee, 2004, Diagenesis of shallow marine sandstones, the Lower Ordovician Dongjeom Formation, Korea: 23- Dongjeom Formation, Korea: response to relative sea-level changes: Journal of Asian Earth Sciences, v. 23, p. 235-245. 24- Kitamura, A., 1999, Glaucony and carbonate grains as indicators of the condensed section, Omma Formation, Japan: Sedimentary Geology, v. 122; p. 151-163. 25- Mansurbega, H., S., Morada, A., Salemc, R., Marfild, M.A.K., El-ghalie, J.P., Nystuenf, M.A., Cajad, A., Amorosig, D., Garciah, and A., La Iglesia, 2008, Diagenesis and reservoir quality evolution of palaeocene deep-water, marine sandstones, the Shetland-Faroes Basin, British continental shelf, Marine and Petroleum Geology, v. 25, p. 514-543. 26- McCracken, S.R., J., Compton and K., Hicks, 1996, Sequence-stratigraphic significance of glaucony-rich lithofacies at Site 903, inMountain, G.G., Miller, K.G., Blum, P., Poag, C.W., Twitchell, D.C., Proceedings of the Ocean Drilling Program, Scientific Results, v. 150, p. 171-187. 27- Morad, S., 1998, Carbonate cementation in sandstones: distribution patterns and geochemical evolution. In: Morad, S., (Ed.), Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution, International Association of Sedimentologists, Special Publication, v. 26, p. 1-26 28- Pasquini, C., A., Lualdi and P., Vercesi, 2004, Depositional dynamics of glaucony-rich deposits in the Lower Cretaceous of Nice arc, Southeast France: Cretaceous Research, v. 25, p. 179-189. 29- Sharafi, M., M., Ashuri, A., Mahboubi, S.R., Harami, in press, Stratigraphic application of Thalassinoidesichnofabric in delineating sequence stratigraphic surfaces (Mid-Cretaceous), Kopet-Dagh Basin, northeastern Iran. Palaeoworld. http://dx.doi.org/ 10.1016/ j.palwor.2012.06.001. 30- South, D.L., and M.R., Talbot, 2000, The sequence stratigraphic framework of carbonate diagenesis within transgressive fan-delta deposits, Sant Llorenc Del Munt fan-delta complex, SE Ebro Basin, NE Spain: Sedimentary Geology, v.183, p. 179-198. 31- Tucker, M.E. and V.P., Wright, 1991, Carbonate Sedimentology, Blackwell, Oxford 482pp. 32- Varol, B., A., Ozguer, E., Kosun, S., İmamgolu, M., Danis, and T., Karakulluku, 2000, Depositional Environments and Sequence Stratigraphy of Glauconites of Western Black Sea region: Mineral Research Exploration Bulletin, v. 122, p. 1-21. 33- Wigley, R., and J.S., Compton, 2007, Oligocene to Holocene glauconite–phosphorite grains from the Head of the Cape Canyon on the western margin of South Africa, Deep-Sea Research II, v. 54, p. 1375-1395. 34- Wilmsen, M., F.T., Fürsich and J., Taheri, 2009, The Shemshak Group (Lower - Middle Jurassic) of the Binalud Mountains, NE Iran: stratigraphy, facies and geodynamic implications. In: Brunet, M.-F., Wilmsen, M. & Granath, J. (Eds), South Caspian to central Iran basins: Geological Society London, Special Publication, v. 312, p. 175-188.
| ||
آمار تعداد مشاهده مقاله: 403 تعداد دریافت فایل اصل مقاله: 423 |