تعداد نشریات | 43 |
تعداد شمارهها | 1,677 |
تعداد مقالات | 13,685 |
تعداد مشاهده مقاله | 31,763,022 |
تعداد دریافت فایل اصل مقاله | 12,553,857 |
کانی شناسی اولیه سازند ایلام بر اساس داده های ژئوشیمیایی در برش نمونه، تاقدیس پیون و مقطع تحت الارضی دانان- a | ||
پژوهش های چینه نگاری و رسوب شناسی | ||
مقاله 3، دوره 27، شماره 3، آبان 1390، صفحه 39-68 اصل مقاله (3.04 M) | ||
نویسندگان | ||
فرنازالسادات شوشتریان* 1؛ محمد حسین آدابی2؛ عباس صادقی3؛ محبوبه حسینی برزی4؛ مسعود لطف پور5 | ||
1دانشجوی دکتری، دانشگاه شهید بهشتی | ||
2استاد، گروه زمین شناسی، دانشگاه شهید بهشتی | ||
3دانشیار، گروه زمین شناسی، دانشگاه شهید بهشتی | ||
4استادیار، گروه زمین شناسی، دانشگاه شهید بهشتی | ||
5استادیار، گروه اکتشاف نفت، دانشکده مهندسی نفت، تهران | ||
چکیده | ||
سازند ایلام (سانتونین-کامپانین) که یکی از سنگ مخزن های نفتی در حوضه زاگرس است، از رخساره های کربناته تشکیل شده است. در این مطالعه در دو برش سطح الارضی (در تاقدیس کبیرکوه و تاقدیس پیون) و یک برش تحت الارضی (چاه دانان- a ) مجموعاً 6 میکروفاسیس تشخیص داده شده است. این میکروفاسیس ها در محیط لاگون تا دریای عمیق ته نشین شده اند. تعداد 446 مقطع نازک از این سازند مورد مطالعه پتروگرافی و تعداد 93 نمونه مورد آنالیز ژئوشیمیایی قرار گرفته است. بر اساس مقدار عناصر اصلی و فرعی و ایزوتوپ های اکسیژن و کربن در نمونه های سازند ایلام و مقایسه آنها با نتایجی که توسط محققین مختلف برای ترکیب کانیشناسی آراگونیتی و کلسیتی ارائه شده است، کانی شناسی اولیه مخلوط آراگونیت و کلسیت در مقاطع مورد مطالعه در سازند ایل ا م تعیین شده است . ایزوتوپ های اکسیژن و کربن همچنین نشان می دهند که این کربنات ها عمدتاً تحت تأثیر فرایندهای دیاژنز متائوریکی قرار داشته اند. دمای قدیمه آب دریا در زمان تهنشست کربنات های سازند ایلام با استفاده از سنگینترین نمونه ایزوتوپ اکسیژن ( PDB ‰ 60/3-)، در حدود 28 درجه سانتیگراد محاسبه شده است. مقادیر عناصر اصلی، فرعی و ایزوتوپی در کربنات ها به مینرالوژی آن ها وابسته بوده و مینرالوژی نیز به نوبه خود تحت تأثیر فرایندهای دیاژنزی تغییر می یابد . با مطالعات پتروگرافی به تنهایی نمی توان به مینرالوژی اولیه کربنات ها و نوع فرایندهای دیاژنزی حاکم بر آن ها پی برد، در نتیجه باید از مطالعات عنصری و ایزوتوپی به عنوان مکمل مطالعات پتروگرافی یاری جست. کانی های مختلف کربناته در شرایط دما، شوری و نسبت های مختلف Ca/Mg تشکیل می شوند. همچنین علاوه بر تغییرات عناصر ا صلی ( Ca, Mg ) ، عناصرفرعی ( Mn, Fe, Na, Sr ) و ایزوتوپ های اکسیژن و کربن نیز در آن ها تغییر می یابد. | ||
کلیدواژهها | ||
گروه بنگستان؛ سازند ایلام؛ کانی شناسی آراگونیت و کلسیت | ||
مراجع | ||
1- آدابی، م.، 1383، ژئوشیمی رسوبی: انتشارات آرین زمین، 448 ص. 2- چهارده چریک، غ.، 1385، زیست چینه نگاری سازند ایلام (مقطع تیپ) بر اساس فرامینیفرهای پلانکتونیک، جنوب شرقی ایلام: رساله کارشناسی ارشد، دانشگاه اصفهان، 122ص. 3- مطیعی، ﻫ.، 1372، زمین شناسی ایران، چینه شناسی زاگرس: انتشارات سازمان زمینشناسی کشور، 536 ص. 4- مطیعی، ﻫ.، 1374، زمینشناسی نفت زاگرس: انتشارات سازمان زمینشناسی کشور، 959 ص. 5- افشین، ث، 1385، میکروفاسیس، ژئوشیمی و محیط رسوبی سازند سروک در تاقدیس کوه سفید (استان کرمانشاه) و مقایسه آن با مقطع سطح الارضی تنگ ماژین (استان ایلام): پایان نامه کارشناسی ارشد، رسوب شناسی و سنگ شناسی رسوبی، 133ص. 6- Adabi, M.H., 1996, Sedimentology and geochemistry of carbonates from Iran and Tasmania: Ph.D. thesis (Unpub.), University of Tasmania, Australia, p.1-470. 7- Adabi M.H., and C.P. Rao, 1991, Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonate (Mozduran Formation), Sarakhs area, Iran: Sed. Geol,. v. 72, p.253-267. 8- Adabi, M.H., and C.P. Rao, 1996, Petrographic elemental and isotopic criteria for the recognition of carbonate mineralogy and climates during the Jurassic (e.g., from Iran and England): 13th Geol. Conv., Australia, (abst.), p. 6. 9- Adabi M.H., and E. Asadi-Mehmandosti, 2008, Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, S.W. Iran.: Journal of Asian Earth Sciences, v. 33, p. 267–277. 10- Adabi, M. H., M. A. Salehi, and A. Ghobeishavi, 2010, Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), south-west Iran. Journal of Asian Earth Sciences, p. 148–160. 11- Baccelle, L., and A., Bosellini, 1965, Diagrammi per la stima visiva della composizione percentulae nelle rocce sedimentarie. Annali della Universita di Ferrara, Sezione ΙX, Science Geologiche Paleontologiche, I.v. 1, p. 59-62. 12- Beydoun, Z.R., M.W., Hughes Clark, R. Stonely, 1992, Petroleum in the Zagros Basin: A Late Tertiary Foreland Basin Overprinted onto the Outer Edge of a Vast Hydrocarbon-Rich Palaeozoic- Mesozoic Passive Margin Shelf. In: MACQUEEN, R. and LECKIE, D. (Eds.), Foreland Basins and Foldbelts: AAPG, Mem.v. 55, p. 309-339. 13- -Brand, U., and J. Veizer, 1980, Chemical diagenesis of a multicomponent carbonate system, Ι: trace elements: Jour. Sed. Petrology, v. 50, p.1219-1236. 14- Flugel, E., 2004, Microfacies of Carbonate Rocks: Analysis, Interpretation and Application: Spring-Verlag-Berlin, 676 p. 15- Grocke, D.R., G.D. Price, A.H. Rufell, J. Mutterlose, and E. Baraboshkin, 2003, Isotopic evidence for Late Jurassic-Early Cretaceous climate change: Palaeogeo. Palaeoclim. Palaeoecol. v. 202, p. 97-118. 16- Heydari, E., 2003, Hydrotectonic models of based on formation water geochemistry in north American sedimentary basins, in I.P., Montanez, J.M., Gregg, and K.L. Shelton, (Eds): Basin-wide diagenetic patterns: Integrated Petrologic, Geochemical and Hydrologic Considerations, Tulsa Ok: SEPM, p.53-79. 17- James, G.A., and J.G. Wynd, 1965, Stratigraphic nomenclature of Iranian Oil Consortium Agreement Area: AAPG Bulletin, v. 40, p. 2182-2245. 18- Kasting, J.F., M.T. Howard, K. Wallmann, J. Veizer, G. Shield, and J. Jaffrés, 2006,Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater: Geochimica et Cosmochimica Acta, v. 70, I. 18, Supplement 1, p. A307 . 19- Land, L.S., and G.K. Hoops, 1973, Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions: Jour. Sed. Petrology, v. 43, p. 614-617. 20- Lohmann, K.C., 1988, Geochemical Ptterns of meteoric diagenetic systems and their application to studies of paleokarst. In: James, N.P., and Choquette, P.W., (Eds.): Paleokarst. New York, Springer-Verlag, p.58-80. 21- Marshall, J.D., 1992, Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation: Geol. Magazine, v. 129, p. 143-160. 22- Milliman, J.D., 1974, Marine Carbonates: New York, Springer-Verlag, 375 p. 23- Moore, C.H., 1985, Upper Jurassic subsurface cements: a case history, in N. Schoneidermann, and P.M.Harris, des., Carbonate Cements, Tulsa, Ok: SEPM Special Publication, No.36, p. 291-308. 24- Moore, C.H. and Y. Druckman, 1981, Burial diagenesis and prosity evolution, Upper Jurassic Smackover, Arkansas and Louisiana: Am. Assoc. Petrol. Geol. Bull., v. 65, p.597-628. 25- Morrison, J.O., and U. Brand, 1986, Geochemistry of recent marine invertebrates: Geosci. Canada, v. 13, p. 237-254. 26- Morse, J.W., and F.T. Mackenzie, 1990, Geochemistry of Sedimentary Carbonates: New York, Elsevier, 707 p. 27- Motiei, H., 1993. Geology of Iran: Stratigraphy of Zagros. Geological Survey of Iran (in Farsi). 28- Pingitore, N.E., 1978, The behavior of Zn and Mn during carbonate diagenesis, theory and applications: Jour. Sed. Petrology, v. 48, p.799-814. 29- Rao, C.P., 1991, Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia: Carbonates and Evaporites, v. 6, p. 83-106. 30- Rao, C.P., 1996, Elemental composition of marine calcite from modern temperate shelf brachiopods, bryozoans and bulk carbonates, eastern Tasmania, Australia: Carbonates and Evaporites, v. 11, p.1-18. 31- Rao, C.P., and M.H. Adabi, 1992, Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia: Mar. Geology, v. 103, p.249-272. 32- Rao, C.P., and Z.Z. Amini, 1995, Faunal relationship to grain-size, mineralogy and geochemistry in Recent temperate shelf carbonates, western Tasmania, Australia: Carbonates and Evaporites, v. 10, p.114-123. 33- Rao, C.P., and M.P.J. Jayawardane, 1994, Major minerals, elemental and isotopic composition in modern temperate shelf carbonates, eastern Tasmania, Australia: implications for the occurrence of extensive ancient non-tropical carbonates: Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 107, p.49-63. 34- Shanmugam, G., and G.L. Benedict, 1983, Manganese distribution in the carbonate fraction of shallow to deep marine lithofacies, Middle Ordovician, eastern Tennessee: Sed. Geology, v. 35, p.159-175. 35- Sepehr, M., and J. W., Cosgrove, 2004. Structural framework of the Zagros Fold-Thrust belt, Iran.Marine and Petroleum geology, v. 21, p. 829-843. 36- Wefer, G. and W.H. Berger, 1991, Isotope paleontology: growth and composition of extent calcareous species: Mar. Geology, v. 100, p.207-248. 37- Wilson, J.L., 1975, Carbonate Facies in Geologic History. New York, Springer-Verlag, 471 p. 38- Ziegler, M. A., 2001, Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbone occurents, GeoArabia, v. 6, no. 3, p. 445-504. 39- Strucview Application of Image log Schlumberger, 2006, Schlumberger. | ||
آمار تعداد مشاهده مقاله: 589 تعداد دریافت فایل اصل مقاله: 1,768 |