تعداد نشریات | 43 |
تعداد شمارهها | 1,638 |
تعداد مقالات | 13,318 |
تعداد مشاهده مقاله | 29,873,813 |
تعداد دریافت فایل اصل مقاله | 11,945,691 |
Quasirecognition by prime graph of U3(q) where 2 < q = pα < 100 | ||
International Journal of Group Theory | ||
مقاله 7، دوره 1، شماره 3، آذر 2012، صفحه 51-66 اصل مقاله (350.8 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/ijgt.2012.1369 | ||
نویسندگان | ||
Seyed Sadegh Salehi Amiri* 1؛ Alireza Khalili Asboei1؛ Ali Iranmanesh2؛ Abolfazl Tehranian1 | ||
1Islamic Azad University | ||
2Tarbiat Modares University | ||
چکیده | ||
Let $G $ be a finite group and let $\Gamma(G)$ be the prime graph of G. Assume $2 < q = p^{\alpha} < 100$. We determine finite groups G such that $\Gamma(G) = \Gamma(U_3(q))$ and prove that if $q \neq 3, 5, 9, 17$, then $U_3(q)$ is quasirecognizable by prime graph, i.e. if $G$ is a finite group with the same prime graph as the finite simple group $U_3(q)$, then $G$ has a unique non-Abelian composition factor isomorphic to $U_3(q)$. As a consequence of our results, we prove that the simple groups $U_{3}(8)$ and $U_{3}(11)$ are $4-$recognizable and $2-$recognizable by prime graph, respectively. In fact, the group $U_{3}(8)$ is the first example which is a $4-$recognizable by prime graph. | ||
کلیدواژهها | ||
prime graph؛ Element order؛ simple group؛ linear group | ||
مراجع | ||
Z. Akhlaghi, M. Khatami and B. Khosravi (2009) Quasirecogniton by prime graph of the simple group $^{2}F_{4}(q)$ Acta. Math. Hungar. 122 (4), 387-397
M. R. Aleeva (2002) On the composition factors of finite groups having
the same set of element orders as the group $U_{3}(q)$ Siberian. Math. J. 43, 195-211
O. A. Alekseeva and A. S. Kondrat$'$ev (2003) Quasirecognition of one class
of finite simple groups by the set of element orders Siberian. Math. J. 44 (2), 195-207
A. Babai , B. Khosravi and N. Hasani (2009) Quasirecogniton by prime graph
of $^{2}D_{p}(3)$ where $p = 2^{n} + 1 geq 5$ is a prime Bull. Malays. Math. Sci. Soc. (2) 32 (2), 343-350
J. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson (1985) Atlas of finite groups Clarendon press, Oxford
M. Foroudi Ghasemabadi and A. Iranmanesh (2011) Quasirecognition by the
prime graph of the group $C_{n}(2)$ where $ n neq 3 $ is odd Bull. Malays. Math. Sci. Soc. (2) 34 (3), 529-540
M. Foroudi Ghasemabadi (2011) Characterization of some finite nonabelian simple groups by prime
graph Ph.D. Thesis, Department of Mathematics, Faculty of
Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
The GAP Group GAP – Groups, Algorithms, and Programming Version
4.4.12; 2008, (http://www.gap-system.org)
M. Hagie (2003) The prime graph of a sporadic simple group Comm. Algebra 31 (9), 4405-4424
H. He and W. Shi (2009) Recognition of some finite simple groups of type
$ D_{n}(q) $ by spectrum Internat. J. Algebra Comput. 19 (5), 681-698
B. Huppert (1967) Endliche Gruppen I Springer-Verlag, New York
N. Iiyori and H. Yamaki (1993) Prime graph components of the
simple groups of Lie type over the field of even characteristic Prime graph components of the
simple groups of Lie type over the field of even characteristic 155, 335-343
C. Janson, K. Lux, R. A. Parker and R. A. Wilson (1995) An atlas of Brauer characters Clarendon
Press, Oxford
B. Khosravi and S. S. Salehi Amiri (2006) On the prime
graph of $L_{2}(q)$ where $q = p^{alpha}<100$ Quasigroups Related Systems 14, 179-190
B. Khosravi, B. Khosravi and B. Khosravi (2007) Groups with the same prime graph
as a textit{CIT} simple group Houston J. Math. 33 (4), 967-977
A. Khosravi and B. Khosravi (2007) Quasirecognition by prime graph
of the simple group $^{2}G_{2}(q)$ Sibirsk. Mat. Zh. 48 (3), 570-577
B. Khosravi, B. Khosravi and B. Khosravi (2007) On the prime graph of
$ PSL(2, p) $ where $p > 3$ is a prime number Acta Math. Hungar. 116 (4), 295-307
B. Khosravi and A. Zarea Moghanjoghi (2007) Quasirecognition by prime
graph of some alternating groups Int. J. Contemp. Math. Sci. 2 (25-28), 1351-1358
A. Khosravi and B. Khosravi (2008) $2-$Recognizability by prime grph of
$ PSL(2,p^{2})$ Siberian Math. J. 49 (4), 749-757
B. Khosravi (2008) $n-$recognition by prime graph of the simple group $ PSL(2,q) $ J. Algebra Appl. 7, 735-748
Behrooz Khosravi, Bahman Khosravi and Behnam Khosravi (2008) A characterization of the
finite simple group $L_{16}(2)$ by its prime graph Manuscripta Math. 126 (1), 49-58
B. Khosravi (2009) Some characterizations of $L_{9}(2)$, related to its prime
graph Publ. Math. Debrecen 75, 375-385
B. Khosravi (2009) Quasirecognition by prime graph of $L_{10}(2)$ Siberian
Math. J. 50, 355-359
B. Khosravi and A. Babai (2011) Quasirecogniton by prime graph of
$F_{4}(q)$ where $q = 2^{n} > 2$ Monatsh. Math. 162 (3), 289-296
B. Khosravi and H. Moradi (2011) Quasirecognition by prime graph of
finite simple groups $L_{n}(2)$ and $U_{n}(2)$ Acta
Math. Hungar. 132 (1-2), 140-153
B. Khosravi, Z. Akhlaghi and M. Khatami (2011) Quasirecognition by prime
graph of the simple group $D_{n}(3)$ Publ. Math. Debrecen 78 (2), 469-484
P. Kleidman and M. Liebeck (1990) The subgroup structure of the finite
classical groups London Mathematical Society Lecture Note Series, 129, Cambridge University Press, Cambridge
A. S. Kondtrat$'$ev (1990) Prime graph components of finite groups Math. USSR-Sb. 67 (1), 235-247
M. S. Lucido (1999) Prime graph components of finite almost simple groups Rend. Sem. Mat. Univ. Padova 102, 1-22
M. S. Luchido and A. R. Moghaddamfar (2004) Groups with complete prime graph
connected components J. Group Theory 7 (3), 373-384
V. D. Mazurov (1998) Recognition of finite groups by a set of orders of their
elements Algebra and Logic 37 (6), 371-379
V. D. Mazurov (2004) Characterizations of groups by arithmetic properties Algebra Colloq. 11 (1), 129-140
V. D. Mazurov and A. V. Zavarnitsine (2007) On element orders in coverings
of the simple groups $L_{n}(q)$ and $U_{n}(q)$ Proc. Steklov Inst. Math. 1, 145-154
Z. Momen and B. Khosravi (2012) On $r-$recognition by prime graph of $B_{p}(3)$ where $p$ is an
odd prime Monatsh. Math. 166 (2), 239-253
D. S. Passman (1968) Permutation Groups W. A. Benjamin Inc.,
New York
C. E. Praeger and W. Shi (1994) A characterization of some alternating and symmetric groups Comm. Algebra 22 (5), 1507-1530
D. J. S. Robinson (1982) A course on the theory of groups Springer-Verlag, New York
A. V. Vasil$'$ev and E. P. Vdovin (2005) An adjacency criterion
for the prime graph of a finite simple group Algebra Logic 44 (6), 381-406
A. V. Vasil$'$ev and I. B. Gorshkov (2009) On recognition of
finite simple groups with connected prime graph Siberian Math. J. 50 (2), 233-238
A. V. Vasil$'$ev and E. P. Vdovin (2011) Cocliques of maximal
size in the prime graph of a finite simple group Algebra Logic 50 (4), 291-322
J. S. Williams (1981) Prime graph components of finite groups J. Algebra 69, 487-513
A. V. Zavarnitsin (2006) Recognition of finite groups by the prime graph Algebra Logic 45 (4), 220-231
A. V. Zavarnitsin (2009) Finite simple groups with narrow prime spectrum Sib. Elektron. Mat. Izv. 6, 1-12
A. V. Zavarnitsine (2010) Uniqueness of the prime graph of $L_{16}(2)$ Sib. Elektron. Mat. Izv. 7, 119-121
| ||
آمار تعداد مشاهده مقاله: 5,612 تعداد دریافت فایل اصل مقاله: 3,172 |