تعداد نشریات | 43 |
تعداد شمارهها | 1,651 |
تعداد مقالات | 13,405 |
تعداد مشاهده مقاله | 30,239,571 |
تعداد دریافت فایل اصل مقاله | 12,083,888 |
Steiner Wiener index of graph products | ||
Transactions on Combinatorics | ||
مقاله 58، دوره 5، شماره 3، آذر 2016، صفحه 39-50 اصل مقاله (251.57 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2016.13499 | ||
نویسندگان | ||
Yaoping Mao* 1؛ Zhao Wang2؛ Ivan Gutman3 | ||
1Department of Mathematics, Qinghai Normal University | ||
2School of Mathematical Sciences, Beijing Normal Universit | ||
3University of Kragujevac Kragujevac, Serbia | ||
چکیده | ||
The Wiener index $W(G)$ of a connected graph $G$ is defined as $W(G)=\sum_{u,v\in V(G)}d_G(u,v)$ where $d_G(u,v)$ is the distance between the vertices $u$ and $v$ of $G$. For $S\subseteq V(G)$, the Steiner distance $d(S)$ of the vertices of $S$ is the minimum size of a connected subgraph of $G$ whose vertex set is $S$. The $k$-th Steiner Wiener index $SW_k(G)$ of $G$ is defined as $SW_k(G)=\sum_{\overset{S\subseteq V(G)}{|S|=k}} d(S)$. We establish expressions for the $k$-th Steiner Wiener index on the join, corona, cluster, lexicographical product, and Cartesian product of graphs. | ||
کلیدواژهها | ||
Distance (in graph)؛ Steiner distance (in graph)؛ Steiner Wiener index؛ product (of graphs) | ||
مراجع | ||
[1] J. A. Bondy and U. S. R. Murty, Graph theory, Springer, New York, 2008. [2] F. Buckley and F. Harary, Distance in graphs, Addison–Wesley, Redwood, 1990. [3] J. Cáceresa, A. Márquezb and M. L. Puertasa, Steiner distance and convexity in graphs, Eur. J. Combin., 29 (2008) 726–736. [4] G. Chartrand, O. R. Oellermann, S. Tian and H. B. Zou, Steiner distance in graphs, Casopis Pest. Mat., 114 (1989) 399–410. [5] P. Dankelmann, O. R. Oellermann and H. C. Swart, The average Steiner distance of a graph, J. Graph Theory, 22 (1996) 15–22. [6] P. Dankelmann, H. C. Swart and O. R. Oellermann, On the average Steiner distance of graphs with prescribed properties, Discrete Appl. Math., 79 (1997) 91–103. [7] A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and application, Acta Appl. Math., 66 (2001) 211–249. [8] R. C. Entringer, D. E. Jackson and D. A. Snyder, Distance in graphs, Czech. Math. J., 26 (1976) 283–296. [9] I. Gutman and B. Furtula (Eds.), Distance in molecular graphs – theory, Univ. Kragujevac, Kragujevac, 2012. [10] I. Gutman and B. Furtula (Eds.), Distance in molecular graphs – applications, Univ. Kragujevac, Kragujevac, 2012. [11] I. Gutman, B. Furtula and X. Li, Multicenter Wiener indices and their applications, J. Serb. Chem. Soc., in press; doi: 10.2298/JSC150126015G. [12] X. Li, Y. Mao and I. Gutman, The Steiner Wiener index of a graph, Discuss. Math. Graph Theory, 36 no. 2 (2016) 455–465. [13] Y. Mao and E. Cheng, Steiner distance in product networks, submitted. [14] D. H. Rouvray and R. B. King (Eds.), Topology in chemistry – discrete mathematics of molecules, Horwood, Chich-ester, 2002. [15] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947) 17–20. [16] K. Xu, M. Liu, K. C. Das, I. Gutman, and B. Furtula, A survey on graphs extremal with respect to distance–based topological indices, MATCH Commun. Math. Comput. Chem., 71 (2014) 461–508. [17] Y. Yeh and I. Gutman, On the sum of all distances in composite graphs,Discrete Math., 135 (1994) 359–365. | ||
آمار تعداد مشاهده مقاله: 2,759 تعداد دریافت فایل اصل مقاله: 3,229 |