تعداد نشریات | 43 |
تعداد شمارهها | 1,647 |
تعداد مقالات | 13,387 |
تعداد مشاهده مقاله | 30,130,923 |
تعداد دریافت فایل اصل مقاله | 12,066,559 |
Degree resistance distance of unicyclic graphs | ||
Transactions on Combinatorics | ||
مقاله 3، دوره 1، شماره 2، شهریور 2012، صفحه 27-40 اصل مقاله (588.45 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22108/toc.2012.1080 | ||
نویسندگان | ||
Ivan Gutman* 1؛ Linhua Feng2؛ Guihai Yu2 | ||
1University of Kragujevac Kragujevac, Serbia | ||
2Department of Mathematics, Central South University | ||
چکیده | ||
Let $G$ be a connected graph with vertex set $V(G)$. The degree resistance distance of $G$ is defined as $D_R(G) = \sum_{\{u, v\} \subseteq V(G)} [d(u)+d(v)] R(u,v)$, where $d(u)$ is the degree of vertex $u$, and $R(u,v)$ denotes the resistance distance between $u$ and $v$. In this paper, we characterize $n$-vertex unicyclic graphs having minimum and second minimum degree resistance distance. | ||
کلیدواژهها | ||
Resistance distance (in graph)؛ Degree distance؛ Degree resistance distance | ||
مراجع | ||
O. Bucicovschi and S. M. Cioab\u{a} (2008) The minimum degree distance of graphs of given
order and size Discrete Appl. Math. 156, 3518-3521
F. Buckley and F. Harary (1990) Distance in Graphs Addison--Wesley, Redwood
P. Dankelmann, I. Gutman, S. Mukwembi and
H. C. Swart (2009) On the degree distance of a graph Discrete Appl. Math. 157, 2773-2777
A. Dobrynin, R. Entringer and I. Gutman (2001) Wiener
index of trees: theory and applications Acta Appl.
Math. 66, 211-249
A. A. Dobrynin and A. A. Kochetova (1994) Degree distance
of a graph: A degree analogue of the Wiener index J. Chem. Inf. Comput. Sci. 34, 1082-1086
I. Gutman (1994) Selected properties of the Schultz molecular
topological index J. Chem. Inf. Comput. Sci. 34, 1087-1089
I. Gutman and B. Furtula (Eds.) (2012) Distance in
Molecular Graphs -- Theory Univ. Kragujevac, Kragujevac
I. Gutman and B. Furtula (Eds.) (2012) Distance in
Molecular Graphs -- Applications Univ. Kragujevac,
Kragujevac
A. Ili\'c, S. Klav\v{z}ar and D. Stevanovi\'c (2010) Calculating the degree distance of partial Hamming graphs MATCH Commun. Math. Comput. Chem. 63, 411-424
A. Ili\'c, D. Stevanovi\'c, L. Feng, G. Yu and
P. Dankelmann (2011) Degree distance of unicyclic and bicyclic
graphs Discrete Appl. Math. 159, 779-788
D. J. Klein and M. Randi\'c (1993) Resistance distance J. Math. Chem. 12, 81-95
A. I. Tomescu (2008) Unicyclic and bicyclic graphs
having minimum degree distance Discrete Appl. Math. 156, 125-130
I. Tomescu (1999) Some extremal properties of the degree
distance of a graph Discrete Appl. Math. 98, 159-163
I. Tomescu (2009) Properties of connected graphs having
minimum degree distance Discrete Math. 309, 2745-2748
W. Xiao and I. Gutman (2003) Resistance distance and Laplacian
spectrum Theoret. Chem. Acta. 110, 284-289
W. Xiao and I. Gutman (2003) On resistance matrices MATCH Commun. Math. Comput. Chem. 49, 67-81
W. Xiao and I. Gutman (2004) Relations between resistance
and Laplacian matrices and their applications MATCH Commun. Math. Comput. Chem. 51, 119-127
H. Yuan and C. An (2006) The unicyclic graphs with maximum
degree distance em J. Math. Study 39, 18-24
| ||
آمار تعداد مشاهده مقاله: 5,659 تعداد دریافت فایل اصل مقاله: 4,709 |