ON THE SEMI COVER-AVOIDING PROPERTY AND \mathcal{F}-SUPPLEMENTATION

CHANGWEN LI* AND XIAOLAN YI

Communicated by Evgeny Vdovin

Abstract. In this paper, we investigate the influence of some subgroups of Sylow subgroups with semi cover-avoiding property and \mathcal{F}-supplementation on the structure of finite groups and generalize a series of known results.

1. Introduction

Throughout the paper, all groups are finite. We use conventional notions and notation, as in Huppert [17]. G always denotes a group, $|G|$ is the order of G, $O_p(G)$ is the maximal normal p-subgroup of G and $\Phi(G)$ is the Frattini subgroup of G.

Let L/K be a normal factor of a group G. A subgroup H of G is said to cover L/K if $HL = HK$, and H is said to avoid L/K if $H \cap L = H \cap K$. If H covers or avoids every chief factor of G, then H is said to have the cover-avoiding property in G. This conception was first studied by Gaschütz (see [5]) to study the solvable groups, later by Gillam (see [6]) and Ezquerro (see [3]), et al. More recently, in Fan et al. (see [4]) introduced the semi cover-avoiding property, which is the generalization not only of the cover-avoiding property but also of c-normality (see [22]). A subgroup H of a group G is said to have the semi cover-avoiding property in G, if there exists a chief series of G such that H either covers or avoids every G-chief factor of this series. The results in Guo and Shum (see [10]) and Wang (see [22]) were extended with the requirement that the certain subgroups of G have the semi cover-avoiding property (see [9] and [16]). More recently, many authors presented some conditions for a group to be p-nilpotent and supersolvable under the condition that some subgroups of Sylow subgroup have the semi cover-avoiding property (see [15], [19] and [27]).

Keywords: semi cover-avoiding property, \mathcal{F}-supplemented, p-nilpotent.

Received: 14 January 2012, Accepted: 20 May 2012.

*Corresponding author.
A subgroup H of a group G is said to be complemented in G if G has a subgroup K such that $G = HK$ and $H \cap K = 1$. A subgroup H of a group G is said to be supplemented in G if there exists a subgroup K of G such that $G = HK$. Obviously, a complemented subgroup is a special supplemented subgroup. Recently, by considering some other special supplemented subgroups, many authors obtained a series of new characterization theorems for soluble groups and supersolvable groups. For example, Wang introduced the concept of c-supplemented subgroup [21] (a subgroup H of a group G is said to be a c-supplemented in G if there exists a subgroup K of G such that $G = HK$ and $H \cap K \leq H_G$, where H_G is the maximal normal subgroup of G contained in H). In 2007, A. Y. Alsheik Ahmad, et al., introduced the concept of U_c-normal subgroup [1] (A subgroup H of a group G is called U_c-normal in G if there exists a subnormal subgroup T of G such that $G = HT$ and $(H \cap T)H_G/H_G$ is contained in the U-hypercenter $Z^U(G/H_G)$, where U is the class of the finite supersoluble groups). As a promotion of above a series of subgroups, W. Guo introduced the concept of F-supplemented subgroup [8] (A subgroup H of a group G is F-supplemented in G if there exists a subgroup T of G such that $G = HT$ and $(H \cap T)H_G/H_G$ is contained in the F-hypercenter $Z^F(G/H_G)$, where F is a formation of finite groups). In [8], by using some F-supplemented subgroups, W. Guo has given some conditions under which a finite group belongs to some formations.

A subgroup that satisfies the cover-avoiding property does not necessarily need to be F-supplemented and vice-versa. In this paper, we will try an attempt to unify the two concepts and establish the structure of groups under the assumption that all maximal subgroups of a Sylow subgroup either have the semi cover-avoiding property or are F-supplemented subgroups. Some new results are obtained and a series of previously known results are generalized, such as in [9], [11], [12], [13], [14], [18], [19], [21], [23], [24] and [25].

2. Preliminaries

In this section, we list some lemmas which will be useful for the proofs of our main results.

Lemma 2.1. [9, Lemmas 2.5 and 2.6] Suppose that H has the semi cover-avoiding property in G.

1. If $H \leq L \leq G$, then H has the semi cover-avoiding property in L.
2. If $N \triangleleft G$ and $N \leq H \leq G$, then H/N has the semi cover-avoiding property in G/N.
3. If H is a π-subgroup and N is a normal π'-subgroup of G, then HN/N has the semi cover-avoiding property in G/N.

Lemma 2.2. [8, Lemma 2.2] Let G be a group and $H \leq K \leq G$. Then

1. If H is F-supplemented in G and F is s-closed, then H is F-supplemented in K.
2. Suppose that H is normal in G. Then K/H is F-supplemented in G/H if and only if K is F-supplemented in G.
3. Suppose that H is normal in G. Then, for every F-supplemented subgroup E in G satisfying $(|H|, |E|) = 1$, HE/H is F-supplemented in G/H.

(4) H is \mathcal{F}-supplemented in G if and only if there exists a subgroup T of G such that $G = HT$, $H_G \leq T$ and $(H/H_G) \cap (T/H_G) \leq Z^G_{\infty}(G/H_G)$.

Lemma 2.3. [9, Lemma 3.1] Let p be a prime dividing the order of the group G with $(|G|, p - 1) = 1$ and let P be a p-Sylow subgroup of G. If there is a maximal subgroup P_1 of P such that P_1 has the semi cover-avoiding property in G, then G is p-solvable.

Lemma 2.4. [21, Lemma 2.8] Let M be a maximal subgroup of G and P a normal p-subgroup of G such that $G = PM$, where p is a prime. Then $P \cap M$ is a normal subgroup of G.

Lemma 2.5. [26, Lemma 2.7] Let G be a group and p a prime dividing $|G|$ with $(|G|, p - 1) = 1$.

1. If N is normal in G of order p, then $N \leq Z(G)$.

2. If G has cyclic Sylow p-subgroup, then G is p-nilpotent.

3. If $M \leq G$ and $|G : M| = p$, then $M \leq G$.

Lemma 2.6. [7, Main Theorem] Suppose that G has a Hall π-subgroup where π is a set of odd primes. Then all Hall π-subgroups of G are conjugate.

Lemma 2.7. [18, Lemma 2.6] Let $H \neq 1$ be a solvable normal subgroup of a group G. If every minimal normal subgroup of G which is contained in H is not contained in $\Phi(G)$, then the Fitting subgroup $F(H)$ of H is the direct product of minimal normal subgroups of G which are contained in H.

Lemma 2.8. [21, Lemma 2.16] Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a normal subgroup N such that $G/N \in \mathcal{F}$. If N is cyclic, then $G \in \mathcal{F}$.

3. Main results

Theorem 3.1. Let p be a prime dividing the order of a group G with $(|G|, p - 1) = 1$ and H a normal subgroup of G such that G/H is p-nilpotent. Suppose that there exists a Sylow p-subgroup P of H such that every maximal subgroup of P either has the semi cover-avoiding property or is \mathcal{N}_p-supplemented in G, where \mathcal{N}_p is the class of all p-nilpotent groups. Then G is p-nilpotent.

Proof. We distinguish two cases:

Case I. $H = G$.

Suppose that the theorem is false and let G be a counterexample of minimal order. We will derive a contradiction in several steps.

1. $O_{\alpha'}(G) = 1$.

Assume that $O_{\alpha'}(G) \neq 1$. Then $PO_{\alpha'}(G)/O_{\alpha'}(G)$ is a Sylow p-subgroup of $G/O_{\alpha'}(G)$. Suppose that $M/O_{\alpha'}(G)$ is a maximal subgroup of $PO_{\alpha'}(G)/O_{\alpha'}(G)$. Then there exists a maximal subgroup P_1 of P such that $M = P_1O_{\alpha'}(G)$. By the hypothesis of the theorem, P_1 either has the semi cover-avoiding property or is \mathcal{N}_p-supplemented in G. Then $M/O_{\alpha'}(G) = P_1O_{\alpha'}(G)/O_{\alpha'}(G)$ either has the semi cover-avoiding property or is \mathcal{N}_p-supplemented in $G/O_{\alpha'}(G)$ by Lemmas 2.1 and 2.2. It is clear
that \(|G/O_p(G)|, p - 1) = 1\). The minimal choice of \(G\) implies that \(G/O_p(G)\) is \(p\)-nilpotent, and so \(G\) is \(p\)-nilpotent, a contradiction. Therefore, we have \(O_p(G) = 1\).

(2) \(O_p(G) \neq 1\).

If not, suppose that \(O_p(G) = 1\). If there is a maximal subgroup of \(P\) which has the semi cover-avoiding property in \(G\), then \(G\) is \(p\)-solvable by Lemma 2.3. Since \(O_p(G) = 1\) by Step (1), we have \(O_p(G) \neq 1\), a contradiction. Thus we may assume that all maximal subgroups of \(P\) are \(M_p\)-supplemented in \(G\). Let \(L\) be an arbitrary maximal subgroup of \(P\). Then \(G\) has a subgroup \(T\) of \(G\) such that \(G = LT\) and \((L \cap T)L_G/L_G\) is contained in the \(N_p\)-hypercenter \(Z_p^\infty(G/L_G)\). Since \(O_p(G) = 1\), obviously \(L_G = 1\). It follows that \(L \cap T \leq Z_p^\infty(G)\). If \(Z_p^\infty(G) \neq 1\), we can take a minimal normal \(N\) of \(G\) which contained in \(Z_p^\infty(G)\). By Step (1), \(N\) is not a \(p'\)-group. Consequently, \(N\) is a \(p\)-group and so \(O_p(G) \neq 1\), a contradiction. Therefore we have \(Z_p^\infty(G) = 1\) and so every maximal subgroup of \(P\) is complemented in \(G\). If \(p \neq 2\), then \(G\) is odd from the assumption that \(|G|, p - 1) = 1\). By the Feit-Thompson Theorem, \(G\) is solvable. It follows that \(O_p(G) \neq 1\) by Step (1), a contradiction. If \(p = 2\), we get also \(G\) is solvable by [2] Lemma 3, the same contradiction.

(3) If \(N \leq O_p(G)\), then \(G/N\) is \(p\)-nilpotent. Consequently, \(G\) is solvable.

Suppose that \(M/N\) is a maximal subgroup of \(P/N\). Then \(M\) is a maximal subgroup of \(P\). By the hypothesis of the theorem, \(M\) either has the semi cover-avoiding property or is \(M_p\)-supplemented in \(G\). Then \(M/N\) either has the semi cover-avoiding property or is \(M_p\)-supplemented in \(G/N\) by Lemmas 2.1 and 2.2. Therefore \(G/N\) satisfies the hypothesis of the theorem. The minimal choice of \(G\) implies that \(G/N\) is \(p\)-nilpotent. If \(p\) is odd, then \(|G|, p - 1) = 1\) implies that \(G\) is odd order, hence \(G\) is solvable. If \(p = 2\), then \(G/N\) is solvable, and so \(G\) is solvable.

(4) \(O_p(G)\) is the unique minimal normal subgroup of \(G\).

Let \(N\) be a minimal normal subgroup of \(G\). Since \(G\) is solvable by Step (3), \(N\) is an elementary abelian subgroup. Note that \(O_p(G) = 1\), then we have \(N\) is a \(p\)-subgroup and so \(N \leq O_p(G)\). Step (3) implies that \(G/O_p(G)\) is \(p\)-nilpotent. Since the class of all \(p\)-nilpotent groups is a saturated formation, \(N\) is a unique minimal normal subgroup of \(G\) and \(N \not\leq \Phi(G)\). Choose \(M\) to be a maximal subgroup of \(G\) such that \(G = NM\). Obviously, \(G = O_p(G)M\) and so \(O_p(G) \cap M\) is normal in \(G\) by Lemma 2.4. The uniqueness of \(N\) yields \(N = O_p(G)\).

(5) The final contradiction.

By the proof in Step (4), \(G\) has a maximal subgroup \(M\) such that \(G = MO_p(G)\) and \(G/O_p(G) \cong M\) is \(p\)-nilpotent. Clearly, \(P = O_p(G)(P \cap M)\). Furthermore, \(P \cap M < P\). Thus, there exists a maximal subgroup \(V\) of \(P\) such that \(P \cap M \leq V\). Hence, \(P = O_p(G)V\). By the hypothesis, \(V\) either has the semi cover-avoiding property or is \(M_p\)-supplemented in \(G\).

First, we assume that \(V\) has the semi cover-avoiding property in \(G\). Since \(O_p(G)\) is the unique minimal normal subgroup of \(G\), \(V\) covers or avoids \(O_p(G)/1\). If \(V\) covers \(O_p(G)/1\), then \(V O_p(G) = V\), i.e., \(O_p(G) \leq V\). It follows that \(P = O_p(G)V = V\), a contradiction. If \(V\) avoids \(O_p(G)/1\), then \(V \cap O_p(G) = 1\). Since \(V \cap O_p(G)\) is a maximal subgroup of \(O_p(G)\), we have that \(O_p(G)\) is of order \(p\) and so \(O_p(G)\) lies in \(Z(G)\) by Lemma 2.5. By Step (3), we have \(G/O_p(G)\) is \(p\)-nilpotent. Then \(G/Z(G)\) is \(p\)-nilpotent, and so \(G\) is \(p\)-nilpotent, a contradiction.
Now, we may assume that \(V \) is \(\mathcal{N}_p \)-supplemented in \(G \). Then there is a subgroup \(T \) of \(G \) such that \(G = VT \) and \((V \cap T)V_G/V_G \) is contained in the \(\mathcal{N}_p \)-hypercenter \(Z^\mathcal{N}_p \infty (G/V_G) \). If \(V_G \neq 1 \), then \(O_p(G) = V_G \leq V \). It follows that \(P = O_p(G)V = V \), a contradiction. Thus we may assume \(V_G = 1 \). Consequently, we have \(V \cap T \leq Z^\mathcal{N}_p \infty (G) \). If \(Z^\mathcal{N}_p \infty (G) \neq 1 \), then \(O_p(G) \leq Z^\mathcal{N}_p \infty (G) \) and \(|O_p(G)| = p \). It follows that \(G \) is \(p \)-nilpotent as above, a contradiction. Now assume that \(Z^\mathcal{N}_p \infty (G) = 1 \). Then \(V \cap T = 1 \), and so \(|T|_p = p \). By Lemma 2.5, \(T \) is \(p \)-nilpotent. Let \(T \) be the normal \(p \)-complement of \(T \). Since \(M \) is \(p \)-nilpotent, we may suppose \(M \) has a normal Hall \(p' \)-subgroup \(M_p' \) and \(M \leq N_G(M_p') \leq G \). The maximality of \(M \) implies that \(M = N_G(M_p') \) or \(M_G(M_p') = G \). If the latter holds, then \(M_p' \leq G \) and \(M_p' \) is actually the normal \(p \)-complement of \(G \), which is contrary to the choice of \(G \). Hence, we may assume \(M = N_G(M_p') \). By applying Lemma 2.6 and the Feit-Thompson Theorem, there exists \(g \in G \) such that \(T^g_p = M_p' \). Hence, \(T^g \leq N_G(T^g_p) = N_G(M_p') = M \). However, \(T_p' \) is normalized by \(T \), so \(g \) can be considered as an element of \(V \). Thus, \(G = VT^g = VM \) and \(P = V(P \cap M) = V \), a contradiction.

Case II. \(H < G \).

By Lemmas 2.1 and 2.2, every maximal subgroup of \(P \) has the semi cover-avoiding property or is \(\mathcal{N}_p \)-supplemented in \(H \). By Case I, \(H \) is \(p \)-nilpotent. Now, let \(H_p' \) be the normal \(p \)-complement of \(H \). Then \(H_p' \leq G \). Assume \(H_p' \neq 1 \) and consider \(G/H_p' \). Applying Lemmas 2.1 and 2.2, it is easy to see that \(G/H_p' \) satisfies the hypotheses for the normal subgroup \(H/H_p' \). Therefore, by induction \(G/H_p' \) is \(p \)-nilpotent and so \(G \) is \(p \)-nilpotent. Hence, we may assume \(H_p' = 1 \) and so \(H = P \) is a \(p \)-group. Since \(G/H \) is \(p \)-nilpotent, we can let \(K/H \) be the normal \(p \)-complement of \(G/H \). By The Schur-Zassenhaus Theorem, there exists a Hall \(p' \)-subgroup \(K_p' \) of \(K \) such that \(K = HK_p' \). A new application of Case I yields \(K \) is \(p \)-nilpotent and so \(K = H \times K_p' \). Hence, \(K_p' \) is a normal \(p \)-complement of \(G \) and \(G \) is \(p \)-nilpotent.

\[\square\]

Corollary 3.2. Let \(P \) be a Sylow \(p \)-subgroup of a group \(G \), where \(p \) is the smallest prime divisor of \(|G|\). If every maximal subgroup of \(P \) either has the semi cover-avoiding property or is \(\mathcal{N}_p \)-supplemented in \(G \), then \(G \) is \(p \)-nilpotent.

Proof. It is clear that \((|G|, p - 1) = 1 \) if \(p \) is the smallest prime dividing the order of \(G \) and so the corollary follows immediately from Theorem 3.1.
\[\square\]

Corollary 3.3. Suppose that every maximal subgroup of any Sylow subgroup of a group \(G \) either has the semi cover-avoiding property or is \(\mathcal{U} \)-supplemented in \(G \), where \(\mathcal{U} \) is the class of all supersolvable groups. Then \(G \) is a Sylow tower group of supersolvable type.

Proof. Let \(p \) be the smallest prime dividing \(|G|\) and \(P \) a Sylow \(p \)-subgroup of \(G \). By Corollary 3.2, \(G \) is \(p \)-nilpotent. Let \(T \) be the normal \(p \)-complement of \(G \). By Lemmas 2.1 and 2.2, every maximal subgroup of any Sylow subgroup of \(T \) has the semi cover-avoiding property or is \(\mathcal{U} \)-supplemented in \(T \). Thus \(T \) satisfies the hypothesis of the Corollary. It follows by induction that \(T \), and hence \(G \) is a Sylow tower group of supersolvable type.
\[\square\]
Corollary 3.4. [19] Theorem 3.3] Let G be a group, p a prime dividing the order of G, and P a Sylow p-subgroup of G. If $(|G|, p - 1) = 1$ and every maximal subgroup of P has the semi cover-avoiding property in G, then G is p-nilpotent.

Corollary 3.5. [9] Theorem 3.2] Let P be a Sylow p-subgroup of a group G, where p is the smallest prime divisor of $|G|$. If P is cyclic or every maximal subgroup of P has the semi cover-avoiding property in G, then G is p-nilpotent.

Proof. If P is cyclic, by Lemma 2.5 we have G is p-nilpotent. Thus we may assume that every maximal subgroup of P has the semi cover-avoiding property in G. By Corollary 3.2, G is p-nilpotent. □

Corollary 3.6. [11] Theorem 3.4] Let G be a group and P a Sylow p-subgroup of G, where p is the smallest prime dividing $|G|$. If all maximal subgroups of P are c-normal in G, then G is p-nilpotent.

Corollary 3.7. [12] Theorem 3.2] Let G be a group and P a Sylow p-subgroup of G, where p is the smallest prime dividing $|G|$. If all maximal subgroups of P are c-supplemented in G, then G is p-nilpotent.

Corollary 3.8. [13] Theorem 3.1] Let P be a Sylow p-subgroup of a group G, where p is a prime divisor of $|G|$ with $(|G|, p - 1) = 1$. If every maximal subgroup of P is c-supplemented in G, then G is p-nilpotent.

Corollary 3.9. [21] Theorem 3.1] Let p be a prime dividing the order of a group G with $(|G|, p - 1) = 1$. Suppose that every maximal subgroup of P is c-supplemented in G and $G \in C_{p'}$, then $G/O_p(G)$ is p-nilpotent and $G \in D_{p'}$.

Theorem 3.10. Let \mathcal{F} be a saturated formation containing \mathcal{U}. A group $G \in \mathcal{F}$ if and only if there is a normal subgroup H of G such that $G/H \in \mathcal{F}$ and every maximal subgroup of any noncyclic Sylow subgroup of H either has the semi cover-avoiding property or is \mathcal{U}-supplemented in G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose that the assertion is false and let G be a counterexample of minimal order.

(1) G has a minimal normal subgroup $N \leq H$ and N is an elementary abelian p-group, where p is the largest prime in $\pi(H)$.

By the hypothesis of the theorem, every maximal subgroup of any noncyclic Sylow subgroup of H either has the semi cover-avoiding property or is \mathcal{U}-supplemented in G. Consequently, by Lemmas 2.1 and 2.2 every one also either has the semi cover-avoiding property or is \mathcal{U}-supplemented in H. Applying Corollary 3.3, H is a Sylow tower group of supersolvable type. Let p be the largest prime divisor of $|H|$ and P a Sylow p-subgroup of H. Then P is normal in H. Obviously, P is normal in G. Therefore, G has a minimal normal subgroup $N \leq H$ and N is an elementary abelian p-group.

(2) $G/N \in \mathcal{F}$ and $N = P$ is the Sylow p-subgroup of H.

First, we want to prove that G/N satisfies the hypothesis of the theorem. In fact, $(G/N)/(H/N) \cong G/H \in \mathcal{F}$. Let P_1/N be a maximal subgroup of the Sylow p-subgroup P/N of H/N. Then P_1 is a
maximal subgroup of the Sylow \(p \)-subgroup \(P \) of \(H \). If \(P/N \) is noncyclic, then \(P \) is also noncyclic. By the hypothesis of the theorem, \(P_1 \) either has the semi cover-avoiding property or is \(\mathcal{U} \)-supplemented in \(G \). By Lemmas 2.1 and 2.2, \(P_1/N \) either has the semi cover-avoiding property or is \(\mathcal{U} \)-supplemented in \(G/N \). Let \(M_1/N \) be a maximal subgroup of the noncyclic Sylow \(q \)-subgroup \(QN/N \) of \(H/N \), where \(q \neq p \) and \(Q \) is a noncyclic Sylow \(q \)-subgroup of \(H \). It is clear that \(M_1 = Q_1N \), where \(Q_1 \) is a maximal subgroup of \(Q \). By the hypothesis of the theorem, \(Q_1 \) either has the semi cover-avoiding property or is \(\mathcal{U} \)-supplemented in \(G \). Hence \(M_1/N \) either has the semi cover-avoiding property or is \(\mathcal{U} \)-supplemented in \(G/N \) by Lemmas 2.1 and 2.2. We now have proved that \(G/N \) satisfies the hypothesis of the theorem. By the minimal choice of \(G \), we have \(G/N \in \mathcal{F} \). Since \(\mathcal{F} \) is a saturated formation, \(N \) is the unique minimal normal subgroup of \(G \) contained in \(P \) and \(N \notin \Phi(G) \). By Lemma 2.7, it follows that \(P = F(P) = N \).

(3) The final contradiction.

Let \(M \) be a maximal subgroup of \(N \). By the hypothesis, \(M \) either has the semi cover-avoiding property or is \(\mathcal{U} \)-supplemented in \(G \). First we assume that \(M \) is \(\mathcal{U} \)-supplemented in \(G \). Then \(G \) has a subgroup \(T \) of \(G \) such that \(G = MT \) and \(T \cap M \leq Z_\mathcal{U}^\infty(G) \). Thus \(G = NT \) and \(N = N \cap MT = M(N \cap T) \). This implies that \(N \cap T \neq 1 \). Since \(N \cap T \) is normal in \(G \) and \(N \) is a minimal normal subgroup of \(G \), \(N \cap T = N \). It follows that \(T = G \), and so \(M \leq N \cap Z_\mathcal{U}^\infty(G) \). By the minimality of \(N \), \(Z_\mathcal{U}^\infty(G) \cap N = 1 \) or \(N \leq Z_\mathcal{U}^\infty(G) \). If the latter holds, then \(|N| = p \). By Step (2), \(G/N \in \mathcal{F} \). Applying Lemma 2.8, \(G \in \mathcal{F} \), a contradiction. Therefore \(Z_\mathcal{U}^\infty(G) \cap N = 1 \). It follows that \(M = 1 \) and \(|N| = p \), the same contradiction as above.

Now we assume that \(M \) has the semi cover-avoiding property in \(G \). Then there exists a chief series of \(G \)

\[
1 = G_0 < G_1 < \cdots < G_{n-1} < G_n = G
\]
such that \(M \) covers or avoids every factor \(G_j/G_{j-1} \). Since \(N \) is minimal normal in \(G \), there exists \(j \) such that \(G_j \cap N = N \) and \(G_{j-1} \cap N = 1 \). If \(M \) covers \(G_j/G_{j-1} \), then \(MG_j = MG_{j-1} \) and so \(MG_j \cap N = MG_{j-1} \cap N \). Hence \(M(G_j \cap N) = M(G_{j-1} \cap N) \), i.e., \(MN = M \), a contradiction. If \(M \) avoids \(G_j/G_{j-1} \), then \(M \cap G_j = M \cap G_{j-1} \) and so \(M \cap G_j \cap N = M \cap G_{j-1} \cap N \), i.e., \(M = 1 \). It follows that the same contradiction as above.

Corollary 3.11. [19, Theorem 3.6] Let \(\mathcal{F} \) be a saturated formation containing \(\mathcal{U} \). If there is a normal Hall subgroup \(H \) of \(G \) such that \(G/H \in \mathcal{F} \) and every maximal subgroup of any Sylow subgroup of \(H \) has the semi cover-avoiding property in \(G \), then \(G \in \mathcal{F} \).

Corollary 3.12. [18, Theorem 3.3] Let \(H \) be a normal subgroup of a group \(G \) such that \(G/H \) is supersolvable. If every maximal subgroup of any Sylow subgroup of \(H \) is \(c \)-normal in \(G \), then \(G \) is supersolvable.

Corollary 3.13. [12, Theorem 4.2] Let \(\mathcal{F} \) be a saturated formation containing \(\mathcal{U} \). If there is a normal subgroup \(H \) of \(G \) such that \(G/H \in \mathcal{F} \) and every maximal subgroup of any Sylow subgroup of \(H \) is \(c \)-supplemented in \(G \), then \(G \in \mathcal{F} \).
Corollary 3.14. [23, Theorem 4.1] Let \mathcal{F} be a saturated formation containing \mathcal{U}. If there is a normal subgroup H of G such that $G/H \in \mathcal{F}$ and every maximal subgroup of any noncyclic Sylow subgroup of H is \mathcal{F}-supplemented in G, then $G \in \mathcal{F}$.

Theorem 3.15. Let \mathcal{F} be a saturated formation containing \mathcal{U}. Suppose that G is a group with a solvable normal subgroup N such that $G/N \in \mathcal{F}$. If every maximal subgroup of each non-cyclic Sylow subgroup of $F(N)$ either has the semi cover-avoiding property or is \mathcal{U}-supplemented in G, then $G \in \mathcal{F}$.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order. We distinguish two cases.

(1) $\Phi(G) \cap N \neq 1$.

Since $\Phi(G) \cap N \neq 1$, then there exists a prime p dividing the order of $\Phi(G) \cap N$. Let P_0 be the Sylow p-subgroup of $\Phi(G) \cap N$. Then $P_0 \leq G$. Since $(G/P_0)/(N/P_0) \cong G/N$, it follows that $(G/P_0)/(N/P_0) \in \mathcal{F}$. By [1, p.270 Satz 3.5], $F(N/P_0) = F(N)/P_0$. Let P_1/P_0 be a maximal subgroup of the Sylow p-subgroup P/P_0 of $F(N)/P_0$. Then P_1 is a maximal subgroup of the Sylow p-subgroup P of $F(N)$. If P/P_0 is non-cyclic, then P is non-cyclic. By the hypothesis, P_1 either has the semi cover-avoiding property or is \mathcal{U}-supplemented in G. Hence P_1/P_0 either has the semi cover-avoiding property or is \mathcal{U}-supplemented in G/P_0 by Lemmas 2.1 and 2.2. Set Q_1/P_0 be a maximal subgroup of the non-cyclic Sylow p-subgroup of $F(N)/P_0$, where $p \neq q$. It is clear that $Q_1 = Q_1/P_0$, where Q_1 is a maximal subgroup of the non-cyclic Sylow p-subgroup of $F(N)$. Then Q_1 either has the semi cover-avoiding property or is \mathcal{U}-supplemented in G. Hence Q_1/P_0 either has the semi cover-avoiding property or is \mathcal{U}-supplemented in G/P_0 by Lemmas 2.1 and 2.2. Now we have proved that G/P_0 satisfies the hypotheses of the theorem. Therefore $G/P_0 \in \mathcal{F}$ by minimal choice of G. Since $P_0 \leq \Phi(G)$ and \mathcal{F} is a saturated formation, we have that $G \in \mathcal{F}$, a contradiction.

(2) $\Phi(G) \cap N = 1$.

If $N = 1$, nothing need to be proved. So assume $N \neq 1$. Then $F(N) \neq 1$ by the solvability of N. By Lemma 2.7, $F(N)$ is the direct product of some minimal normal subgroups of G. Let P be the Sylow p-subgroup of $F(N)$. We can denote $P = R_1 \times R_2 \times \cdots \times R_m$, where every R_i is a minimal normal subgroup of G. We will show that $|R_i| = p$ ($i = 1, 2, \cdots, m$). If not, then there exists an index i such that $|R_i| > p$. Without loss of generality, suppose that $i = 1$. Since $R_1 \nleq \Phi(G)$, there exist a maximal subgroup M of G such that $G = R_1M$ and $R_1 \cap M = 1$. Then $G_p = R_1M_p$. Pick a maximal subgroup G_p^* of G_p containing M_p. Then $|R_1 : G_p^* \cap R_1| = |R_1G_p^*/G_p^*| = |G_p : G_p^*| = p$. Hence $R_1 = G_p^* \cap R_1$ is a maximal subgroup of R_1. This implies that $P^* = R_1^1R_2 \cdots R_m$ is a maximal subgroup of P. Obviously, P is not cyclic. By the hypothesis, P^* either has the semi cover-avoiding property or is \mathcal{U}-supplemented in G. Let $K = R_2 \times \cdots \times R_m$.

First, we assume that P^* has the semi cover-avoiding property in G. By Lemma 2.1, P^*/K has the semi cover-avoiding property in G/K. Suppose that P^*/K cover-avoids a chief series $1 = K \triangleleft G_1/K = G_1 \triangleleft \cdots \triangleleft G/K = G_n$ of G/K. Let i be the smallest number in $\{1, 2, \cdots, n-1\}$ such that G_{i+1}/G_i was covered by P^*/K in above chief series. Then we have $G_i \cap P^* = K$ and $G_{i+1} \leq G_iP^* = G_iR_i^*$. Hence
\[G_{i+1} = G_i(R_i^* \cap G_{i+1}) \text{ and } R_i^* \cap G_{i+1} > 1. \] Since \(R_1 \) is a minimal normal subgroup of \(G \), we have \(R_1 \leq G_{i+1} \text{ and } R_1 \cap G_i = 1. \) Hence \(|R_1| = |G_{i+1}/G_i| = |R_i^* \cap G_{i+1}| < |R_1| \), a contraction. Therefore, \(P^*/K \) does not cover any chief factor in above chief series. It follows that \(P^*/K = 1 \) and \(|R_1| = p \), a contraction.

We now assume that \(P^* \) is \(\mathcal{U} \)-supplemented in \(G \). By Lemma 2.11 (4), there exists a subgroup \(T \) of \(G \) such that \(G = P^*T \) and \(P^*/P_G \cap T/P_G \leq Z_{\infty}(G/P_G) \). Obviously, \(P_G = K \) and so \(P^*/K \cap T/K \leq Z_{\infty}(G/K) \). If \(P^*/K \cap T/K = 1 \), then \(P^* \cap T = K \) and so \(G = P^*T = R_i^*KT = R_iT = R_iT \).

It is easy to see that \(R_1 \cap T \triangleleft G \). Since \(R_1 \) is a minimal normal in \(G \), we have \(R_1 \cap T = 1 \) or \(R_1 \cap T = R_1 \). If the latter holds, then \(T = G \) and \(K = P^* \). In this case, \(R_i^* = 1 \) and \(R_1 \) is of order \(p \), a contraction. Therefore we have \(R_1 \cap T = 1 \). It follows that \(R_i^* \cap T = 1 \). Then \(|G| = |R_i^*||T| = |R_i||T| \) and \(|R_i^*| = |R_1| \). This contraction shows that \(P^*/K \cap T/K \neq 1 \). Let \(Z_{\infty}(G/K) = V/K \). Then \(P/K \cap V/K \triangleleft G/K \). Since \(P \cap V \supseteq P^* \cap T \cap V = P^* \cap T > K \), we have \(P/K \cap V/K \neq 1 \). By the \(G \)-isoformation \(P/K \cong R_1 \), we see that \(P/K \) is a chief factor of \(G \) contained in \(V/K \). Therefore, \(P/K \) is of order \(p \) and so \(|R_1| = p \), a contraction.

From above discussion, we can let \(F(N) = L_1 \times L_2 \times \cdots \times L_n \), where every \(L_i \) is a normal subgroup of prime order. Obviously \(G/C_G(L_i) \) is abelian. Since \(C_G(F(N)) = \bigcap_{i=1}^n C_G(L_i) \), \(G/C_G(F(N)) \) is abelian. Hence \(G/C_G(F(N)) \in \mathcal{U} \subseteq \mathcal{F} \). By the assumption, \(G/N \in \mathcal{F} \), it implies \(G/N \cap C_G(F(N)) = G/C_N(F(N)) \in \mathcal{F} \) by the properties of formations. Since \(N \) is solvable, \(C_N(F(N)) \leq F(N) \). Again, \(F(N) \) is abelian, so \(F(N) \leq C_N(F(N)) \). Thus \(F(N) = C_N(F(N)) \) and \(G/F(N) \in \mathcal{F} \). By Theorem 3.10 \(G \in \mathcal{F} \), a contradiction.

Corollary 3.16. [25 Theorem 1] Let \(\mathcal{F} \) be a saturated formation containing \(\mathcal{U} \), the class of all supersolvable groups. Suppose that \(G \) is a group with a solvable normal subgroup \(H \) such that \(G/H \in \mathcal{F} \). If all maximal subgroups of all Sylow subgroups of \(F(H) \) are c-normal in \(G \), then \(G \in \mathcal{F} \).

Corollary 3.17. [24 Theorem 4.5] Let \(\mathcal{F} \) be a saturated formation containing \(\mathcal{U} \), the class of all supersolvable groups. Suppose that \(G \) is a group with a solvable normal subgroup \(H \) such that \(G/H \in \mathcal{F} \). If all maximal subgroups of all Sylow subgroups of \(F(H) \) are c-supplemented in \(G \), then \(G \in \mathcal{F} \).

Corollary 3.18. [14 Theorem 1.6] Let \(\mathcal{F} \) be a saturated formation containing \(\mathcal{U} \), the class of all supersolvable groups. Suppose that \(G \) is a group with a solvable normal subgroup \(H \) such that \(G/H \in \mathcal{F} \). If all maximal subgroups of all Sylow subgroups of \(F(H) \) are complemented in \(G \), then \(G \in \mathcal{F} \).

Acknowledgments

The author would like to thank the referee for his comments. The project is supported by the Natural Science Foundation of China (No:11101369) and the Natural Science Foundation of the Jiangsu Higher Education Institutions (No:10KJD110004).
References

Changwen Li
School of Mathematical Science, Jiangsu Normal University, Xuzhou, China
Email: lcw2000@126.com

Xiaolan Yi
School of Science, Zhejiang University of Technology, Hanzhou, China
Email: yixiaolan2005@126.com