
www.combinatorics.ir

Transactions on Combinatorics

ISSN (print): 2251-8657, ISSN (on-line): 2251-8665

Vol. 4 No. 4 (2015), pp. 55-61.

c⃝ 2015 University of Isfahan

www.ui.ac.ir

A CLASSIFICATION OF FINITE GROUPS WITH INTEGRAL BI-CAYLEY

GRAPHS

MAJID AREZOOMAND∗ AND BIJAN TAERI

Communicated by Alireza Abdollahi

Abstract. The bi-Cayley graph of a finite group G with respect to a subset S ⊆ G, which is denoted

by BCay(G,S), is the graph with vertex set G× {1, 2} and edge set {{(x, 1), (sx, 2)} | x ∈ G, s ∈ S}.
A finite group G is called a bi-Cayley integral group if for any subset S of G, BCay(G,S) is a graph

with integer eigenvalues. In this paper we prove that a finite group G is a bi-Cayley integral group if

and only if G is isomorphic to one of the groups Zk
2 , for some k, Z3 or S3.

1. Introduction

Throughout the paper, groups are finite and graphs are undirected, finite, and without loops and

multiple edges. The bi-Cayley graph of a finite group G with respect to a subset S ⊆ G, which is

denoted by BCay(G,S), is the graph with vertex set G × {1, 2} and edge set {{(x, 1), (sx, 2)} | x ∈
G, s ∈ S}. A graph Γ is called integral if all eigenvalues of the adjacency matrix of Γ are integers.

The concept of integral graphs was first defined by Harary and Schwenk [9]. During the last fourty

years many mathematicians tried to construct and classify integral graphs, for a survey on integral

graphs up to 2002, see [6]. Integral graphs are very rare, indeed the probability of a labeled graph on

n vertices to be integral is at most 2−n/400 for sufficiently large n, see [3]. Known characterizations

of integral graphs are restricted to special classes of graphs including Cayley graphs, see for example

[1, 2, 11]. Klotz and Sander [11] called a group G Cayley integral group whenever all undirected Cayley

graphs over G are integral. They showed that finite abelian Cayley integral groups are Zn
2 × Zm

3 and

Zn
2 ×Zm

4 , where Zn is the cyclic group of order n. Recently, the classification of finite Cayley integral
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groups completed in [2] (also independently in [4]) by proving that finite non-abelian Cayley integral

groups are the symmetric group S3 of degree 3, Dic12 and Q8 × Zn
2 for some integer n ≥ 0, where

Dic12 is the dicyclic group of order 12 and Q8 is the quaternion group of order 8. In this paper we

consider the bi-Cayley graphs and classify groups G with the property that all bi-Cayley graphs of G

are integral. For the group-theoretic and graph-theoretic terminology not defined here we refer the

reader to [14, 7], respectively.

2. Eigenvalues of bi-Cayley graphs

Let G be a finite group and Irr(G) = {ρ1, . . . , ρm} be the set of all irreducible inequivalent C-
representations of G, dk, ϱ

(k), and χk be the degree, unitary matrix representations and the corre-

sponding irreducible character of ρk, k = 1, . . . ,m, respectively. For a subset X of G and l = 1, . . . ,m,

we set ϱ(l)(X) :=
∑

x∈X ϱ(l)(x). Note that if G is a finite abelian group, every unitary irreducible

matrix representation is an irreducible character, m = |G| and dl = 1 for each l = 1, . . . ,m. Also

it is well-known that for each irreducible character χ of G and each g ∈ G, χ(g−1) is the complex

conjugate of χ(g). We use these notations in this section.

For a positive integer n, a graph Γ is called n-Cayley graph over a group G if the full automor-

phism group of Γ has a semiregular subgroup isomorphic to G with n orbits. Recently, the present

authors determined the eigenvalues of n-Cayley graphs in [5]. By [5, Lemma 2], an n-Cayley graph is

characterized by n2 subsets Tij , 1 ≤ i, j ≤ n, of G (some subsets maybe empty). An n-Cayley graph

over a group G can be identified by a graph Γ = Cay(G,Tij | 1 ≤ i, j ≤ n), where Tij ’s are subsets

of G, V (Γ) = G × {1, . . . , n} and (x, i) is adjacent to (y, j) if and only if yx−1 ∈ Tij (see [5]). Note

that 2-Cayley graphs are called by some authors semi-Cayley [13, 8] and by some authors bi-Cayley

graphs [12]. The concept of bi-Cayley graphs, studied in this paper, first defined in [15] for a special

case of the bi-Cayley graphs which defined later in [12]. Hence we follow [15] and call it the bi-Cayley

graph of G with respect to S.

It follows from the definition of bi-Cayley graphs that BCay(G,S) ∼= Cay(G,T11, T22, T12, T21),

where T11 = T22 = ∅, T12 = S and T21 = S−1. Now, the following theorem is a direct consequence of

the main theorem of [5].

Theorem 2.1. Let Γ = BCay(G,S) with adjacency matrix A. Let

Al =

[
0dl ϱ(l)(S−1)

ϱ(l)(S) 0dl

]
,

where 0dl is the dl × dl matrix with all entries 0. Then pA(λ) =
∏m

l=1 pAl
(λ)dl , where pX(λ) is the

characteristic polynomial of matrix X.

In particular, if G is abelian then eigenvalues of BCay(G,S) are ±|
∑

s∈S χi(s)|, i = 1, . . . , |G|.
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3. Bi-Cayley integral groups

Recall that a finite group G is said to be a bi-Cayley integral group if for any subset S of G,

BCay(G,S) is a graph with integer eigenvalues (an integral graph). In this section we characterize all

bi-Cayley integral groups. Let us denote the cycle with n vertices, the complete graph with n vertices

and the complete bipartite graph with partition sizes m,n with Cn, Kn and Km,n, respectively. By

section 1.5 of [7], the eigenvalues of Cn are 2 cos(2πj/n), j = 0, . . . , n − 1, the eigenvalues of Kn are

n− 1 with multiplicity 1 and −1 with multiplicity n− 1 and the eigenvalues of Km,n are ±
√
mn and

0 with multiplicity m+ n− 2. It is well-known that Cn is integral if and only if n ∈ {3, 4, 6}. If λ is

an eigenvalue with multiplicity n, for the convenience, we write λ[n].

Since BCay(G, ∅) ∼= 2|G|K1, BCay(G,G) ∼= K|G|,|G| and for every element a of G, BCay(G, {a}) ∼=
|G|K2, BCay(G,S) is integral whenever S = ∅, S = G or |S| = 1.

The tensor product of two graphs Γ1 and Γ2, Γ1⊗Γ2 has V (Γ1)×V (Γ2) as its vertex set with(u1, u2)

is adjacent to (u2, v2) whenever u1, u2 are adjacent in Γ1 and u2, v2 are adjacent in Γ2.

In the following lemma, we recall the eigenvalues of the tensor product of two graphs.

Lemma 3.1. (see [7, Section 1.5.7]) If λ1, . . . , λn are the eigenvalues of Γ1, and µ1, . . . , µm are the

eigenvalues of Γ2, then the eigenvalues of Γ1 ⊗ Γ2 are λiµj for i = 1, . . . , n and j = 1, . . . ,m.

For a subset S of a group G, the Cayley graph of G over S, denoted by Cay(G,S), is the graph with

vertex set G and (x, y) is an edge if yx−1 ∈ S. If S is inverse-closed then Cay(G,S) is undirected.

Also if 1 /∈ S then Cay(G,S) is loop-free. The following lemma is obvious from the definition of a

bi-Cayley graph.

Lemma 3.2. Let S be an inverse-closed subset of G. Then BCay(G,S) ∼= Cay(G,S) ⊗ K2. In

particular, BCay(G,S) is integral if and only if Cay(G,S) is integral. Therefore every bi-Cayley

integral group is a Cayley integral group.

Remark 3.3. Let G be a bi-Cayley integral group. Then by Lemma 3.2 and [4, Theorem 4.2] (or [2,

Theorem 1.2]), G is isomorphic to one of the groups

Zn
2 × Zm

3 ,Zn
2 × Zm

4 , Q8 × Zn
2 , S3,Dic12.

In what follows, we examine the above groups to classify bi-Cayley integral groups. Let us start

with cyclic bi-Cayley integral groups.

Lemma 3.4. G is a cyclic bi-Cayley integral group if and only if G ∼= Z2 or Z3.

Proof. First suppose that G ∼= Z2 and S be a subset of G. Then S = ∅ or S = G or |S| = 1. Hence

BCay(G,S) is integral.

Now, suppose that G ∼= Z3 and S be a subset of G. If S = ∅ or |S| = 1 or |S| = 3 then BCay(G,S)

is integral. Let |S| = 2. Then BCay(G,S) ∼= C6 which is integral.
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Finally suppose that G = ⟨y⟩ ∼= Zn, n ≥ 4 is a bi-Cayley integral group. Set S := {1, y}. Since G

is a bi-Cayley integral group, BCay(G,S) ∼= C2n must be integral. Hence n ∈ {2, 3}, a contradiction.

This completes the proof. □

Lemma 3.5. Let S ⊆ H ≤ G. Then BCay(G,S) ∼= |G : H| BCay(H,S).

Proof. Let Γ = BCay(G,S). If G = H then there is nothing to prove. So we may assume that

H < G, |G : H| = m > 1. Let T = {t1 = 1, t2, . . . , tm} be a right transversal to H in G. For each

i ∈ {1, . . . ,m}, we define a graph Γi with V (Γi) = Hti × {1, 2} and E(Γi) = {{(h1ti, 1), (h2ti, 2)} |
h2h

−1
1 ∈ S}. We claim that Γ is Σ := Γ1 + · · ·+ Γm, the disjoint union of Γ1, . . . ,Γm. Clearly

V (Γ1 + · · ·+ Γm) =

m∪
i=1

V (Γi)

=

m∪
i=1

Hti × {1, 2}

=

(
m∪
i=1

Hti

)
× {1, 2}

= G× {1, 2}

= V (Γ).

Now, let x, y ∈ G. Then there exist unique i, j ∈ {1, . . . ,m} and a, b ∈ H such that x = ati and

y = btj . Let {(x, 1), (y, 2)} ∈ E(Γ). Then yx−1 ∈ S. So yx−1 = btjt
−1
i a−1 ∈ H which implies that

tjt
−1
i ∈ H. Hence Hti = Htj which means that ti = tj and i = j. This shows that ba−1 = yx−1 ∈ S

and so {(x, 1), (y, 2)} ∈ E(Γi) ⊆ E(Σ). Hence E(Γ) ⊆ E(Σ). The inverse inclusion is obvious. This

proves our claim. Now, for each i ∈ {1, . . . ,m}, the map

φi : V (Γi) → V (Γ1)

(hti, 1) 7→ (h, 1),

(hti, 2) 7→ (h, 2)

is a graph isomorphism. On the other hand Γ1 = BCay(H,S). This completes the proof. □

Corollary 3.6. Let G be a bi-Cayley integral group and H ≤ G. Then H is also a bi-Cayley integral

group. In particular, the order of each element of G is 2 or 3.

Proof. Let S ⊆ H. Then, by Lemma 3.5, BCay(G,S) ∼= |G : H|BCay(H,S). Let λ be an eigenvalue of

BCay(H,S). Then λ is an eigenvalue of BCay(G,S) with multiplicity |G : H|. Since G is a bi-Cayley

integral group, λ is an integer. This shows that H is also a bi-Cayley integral group.

Now, the last statement follows from the fact that ⟨g⟩, where g ∈ G, is a bi-Cayley integral group

and Lemma 3.4. □

Lemma 3.7. S3 is a bi-Cayley integral group.
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Proof. Note that, by [10, Lemma 2.1], BCay(G,S) ∼= BCay(G, gSα), where α ∈ Aut(G) and g ∈ G.

Also for any S ⊆ G with |S| ∈ {0, 1, |G|}, BCay(G,S) is integral. Therefore to determine the integrality

of bi-Cayley graphs over S3, it is enough to consider BCay(S3, S), where S is one of the following sets:

{(), (1, 2)}, {(), (1, 2, 3)}, {(), (1, 2), (1, 3)}, {(), (1, 2, 3), (1, 3, 2)},

{(), (1, 2), (1, 3), (2, 3)}, {(), (1, 2, 3), (1, 2), (2, 3)}, {(), (1, 2), (1, 3), (2, 3), (1, 2, 3)}.

On the other hand, S3 is a Cayley integral group by [4, Theorem 4.2] (or [2, Theorem 1.1]). Thus,

by Lemma 3.2, it is enough to consider subsets S which are not inverse-closed:

{(), (1, 2, 3)}, {(), (1, 2, 3), (1, 2), (2, 3)}, {(), (1, 2), (1, 3), (2, 3), (1, 2, 3)}.

Computing the the spectrum BCay(S3, S) is easy from Theorem 2.1 using irreducible representations

of S3. For example, we compute the spectrum of BCay(S3, S) whenever S = {(), (1, 2), (1, 3), (2, 3), (1, 2, 3)}.
First note that S3 = ⟨a, b⟩, where a = (1, 2, 3), b = (1, 2), and the irreducible representations of S3 are

ρ1 : b
iaj 7→ 1,

ρ2 : b
iaj 7→ (−1)i,

ρ3 : a
j 7→

[
ωj 0

0 ω−j

]
, baj 7→

[
0 ω−j

ωj 0

]
,

where 0 ≤ i ≤ 1, 0 ≤ j ≤ 2 and ω = exp(2πi/3). If S = {(), (1, 2), (1, 3), (2, 3), (1, 2, 3)} and

Γ = BCay(S3, S), then

A1 =

[
0 5

5 0

]
, A2 =

[
0 −1

−1 0

]
, A3 =


0 0 −ω 0

0 0 0 −ω2

−ω2 0 0 0

0 −ω 0 0

 .

Since the eigenvalues of A1, A2 and A3 are the multi-sets {(±5)[1]}, {(±1)[1]} and {(±1)[2]}, respec-
tively, Theorem 2.1 implies that the eigenvalues of Γ are (±5)[1], (±1)[5].

We can easily compute eigenvalues of the remaining bi-Cayley graphs:

(±2)[2], (±1)[4], (±4)[1], (±2)[2], (0)[6].

Hence all bi-Cayley graphs of S3 are integral. □

Lemma 3.8. Z3 × Z3 is not a bi-Cayley integral group.

Proof. Let G ∼= Z3 × Z3. Then G = ⟨a, b | a3 = b3 = 1, ab = ba⟩ is a presentation of G. Put S :=

{1, a, b}. Define χ1 : ⟨a⟩ → C, and χ2 : ⟨b⟩ → C, where χ1(a) = χ2(a) = exp(2πi/3). Then χ := χ1×χ2

is an irreducible character of G, see [14, section 3.2], and |
∑

s∈S χ(s)| = |1+ 2 exp(2πi/3)| =
√
3 is an

eigenvalue of BCay(G,S), by Theorem 2.1. This shows that G is not a bi-Cayley integral group. □

Lemma 3.9. Zk
2, k ≥ 1 is a bi-Cayley integral group.
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Proof. Let S be a subset of G ∼= Zk
2. Then S is inverse-closed. Since Zk

2 is a Cayley integral group,

Lemma 3.2 implies that it is a bi-Cayley integral group. □

Now, we are ready to prove the main result of the paper.

Theorem 3.10. Let G be a finite group. Then G is a bi-Cayley integral group if and only if G is

isomorphic to one of the groups Zk
2, for some integer k, Z3 or S3.

Proof. By Lemmas 3.4, 3.7 and 3.9, Zk
2, for some integer k, Z3 and S3 are bi-Cayley integral groups.

Conversely, suppose that G is a bi-Cayley integral group. Then by Remark 3.3, G is isomorphic to

one of the groups Zn
2 ×Zm

3 , Zn
2 ×Zm

4 , Q8 ×Zn
2 , S3, or Dic12, for some integers m,n ≥ 0. By Corollary

3.6 and Lemma 3.8, the only abelian bi-Cayley integral groups are Zn
2 , for some integer n and Z3.

Since Q8 and Dic12 has elements of order 4, by Lemma 3.7 and Corollary 3.6, the only non-abelian

bi-Cayley integral group is S3. This completes the proof. □
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