PERFECT STATE TRANSFER IN UNITARY CAYLEY GRAPHS
OVER LOCAL RINGS

Y. MEEMARK* AND S. SRIWONGSA

Communicated by Dariush Kiani

Abstract. In this work, using eigenvalues and eigenvectors of unitary Cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allow a PST occurring in its unitary Cayley graph. Moreover, we have some developments when R is a product of local rings.

1. Perfect State Transfer and Unitary Cayley Graphs

Let G be an undirected graph whose vertex set $V(G) = \{v_1, \ldots, v_n\}$. The adjacency matrix of G, written A_G, is the $n \times n$ matrix in which entry a_{jk} is the number of edges in G with endpoint $\{v_j, v_k\}$. Define the matrix-valued function

$$H(t) = \exp(itA_G) \quad \text{for all } t \geq 0.$$

We say there is a perfect state transfer (PST) from vertex v_j to vertex v_k if there is a time t such that $|H(t)_{jk}| = 1$. We note that our matrix $H(t)$ determines what is known in graph theory as a continuous quantum walk. For background on quantum walks, we refer the reader to [9] and [10]. A perfect state transfer in continuous-time quantum walk on graphs has received considerable attention in quantum information and computations in Physics (e.g., [2, 4]). An excellent survey of perfect state transfer graphs and related questions are given by Godsil [8]. Observe that $H(t)$ has the following properties:

(i) $H(t)$ is symmetric,
(ii) $\overline{H(t)} = H(t)^{-1}$, where $\overline{\cdot}$ is the complex conjugate,
(iii) $H(t)$ is unitary, i.e., $(H(t))^T = H(t)^{-1}$.

Thus, we have the next proposition.

MSC(2010): Primary: 15A18; Secondary: 05C50
Keywords: Local rings, Perfect state transfer, Unitary Cayley graphs.
Received: 21 March 2014, Accepted: 1 August 2014.
*Corresponding author.
Proposition 1.1. If we have a perfect state transfer on A_G from vertex a to vertex b at time t, then we have a perfect state transfer from vertex b to vertex a at the same time.

The following theorem is well known in Linear Algebra.

Theorem 1.2. Let $\mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k$ be an orthogonal decomposition of \mathbb{R}^n, where each W_j is spanned by orthogonal basis $\vec{u}_{j1}, \vec{u}_{j2}, \ldots, \vec{u}_{jm_j}$ for some $m_j \in \mathbb{N}$ and for all $j \in \{1, 2, \ldots, k\}$. For each $j \in \{1, 2, \ldots, k\}$, let E_j be the projection of \mathbb{R}^n for W_j. Then the lth column of the standard matrix of E_j is given by

$$E_j(\vec{e}_l) = \langle \vec{e}_l, \vec{u}_{j1} \rangle \frac{\vec{u}_{j1}}{||\vec{u}_{j1}||^2} + \langle \vec{e}_l, \vec{u}_{j2} \rangle \frac{\vec{u}_{j2}}{||\vec{u}_{j2}||^2} + \cdots + \langle \vec{e}_l, \vec{u}_{jm_j} \rangle \frac{\vec{u}_{jm_j}}{||\vec{u}_{jm_j}||^2}$$

for all $l \in \{1, 2, \ldots, n\}$, where $\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}$ is the standard basis of \mathbb{R}^n.

Recall that A_G is orthogonally diagonalizable. Let $\theta_1, \theta_2, \ldots, \theta_m$ be distinct eigenvalues of A_G and let E_r denote the orthogonal projection on the eigenspace belonging to θ_r for all $r \in \{1, 2, \ldots, m\}$. Here, we abuse the notation by writing E_r for its standard matrix. It follows from the Spectral Theorem (Theorem 6.25 of [5]) that

(i) $E_jE_k = \delta_{jk}E_j$, for $1 \leq j, k \leq m$,

(ii) $E_1 + E_2 + \cdots + E_r = I_n$,

(iii) $\theta_1E_1 + \theta_2E_2 + \cdots + \theta_mE_m = A_G$.

If f is a differentiable complex-valued function defined on the eigenvalues of A_G, then

$$f(A_G) = \sum_{r=1}^{m} f(\theta_r)E_r.$$

In particular,

$$H(t) = \exp(itA_G) = \sum_{r=1}^{m} \exp(it\theta_r)E_r.$$

For $j \in \{1, 2, \ldots, n\}$, we write $|\vec{e}_j\rangle = \vec{e}_j$, the jth column of the identity matrix I_n. The following proposition is Lemma 2.1 of [8]. It will become our main tool, so we record it below.

Proposition 1.3. A perfect state transfer occurs in G from vertex a to vertex b at time t if and only if there is a $\gamma \in \mathbb{C}$ such that $|\gamma| = 1$ and $E_r |b\rangle = \gamma \exp(-it\theta_r)E_r |a\rangle$ for all $r \in \{1, 2, \ldots, m\}$.

Corollary 1.4. If there is a perfect state transfer from vertex a to vertex b, then $E_r |a\rangle = \pm E_r |b\rangle$ for all $r \in \{1, 2, \ldots, m\}$.

Proof. It follows from the fact that $E_r |a\rangle$ and $E_r |b\rangle$ are real vectors for all $r \in \{1, 2, \ldots, m\}$. \hfill \square

By Proposition 1.3, another main tool for studying perfect state transfers is the spectral decomposition of A_G.

Let R be a finite commutative ring with unity $1 \neq 0$ and let R^\times denote the unit group of invertible elements of R. The unitary Cayley graph of R, $G_R = \text{Cay}(R, R^\times)$ is the Cayley graph whose vertex set is R and edge set is $\{\{a, b\} : a, b \in R$ and $a - b \in R^\times\}$.

For two graphs G and H, their weak product, $G \otimes H$, is the graph defined on $V(G) \times V(H)$ where (a, b) is adjacent to (a', b') if and only if a is adjacent to a' in G and b is adjacent to b' in H. The adjacency matrix of $G \times H$ is $A_G \otimes A_H = \begin{bmatrix} a_{11}A_H & \ldots & a_{1n}A_H \\ \vdots & \ddots & \vdots \\ a_{n1}A_H & \ldots & a_{nn}A_H \end{bmatrix}$, where a_{jk} is the entry in A_G for all $j, k \in \{1, 2, \ldots, n\}$.

Recall that a local ring R is a commutative ring with unity 1 which has a unique maximal ideal M. Note that, if R is a local ring with unique maximal ideal M, then $R^\times = R \setminus M$. Furthermore, every finite commutative ring is a product of local rings. The structure of G_R is presented in the next proposition.

Proposition 1.5. [1]

Let R be a finite commutative ring.

(i) G_R is a regular graph of degree $|R^\times|$.

(ii) If R is a local ring with maximal ideal M, then G_R is a complete multipartite graph whose partite sets are the cosets of M in R. In particular, G_R is a complete graph if and only if R is a field.

(iii) If $R \cong R_1 \times \cdots \times R_s$ is a product of local rings, then $G_R \cong \bigotimes_{i=1}^s G_{R_i}$.

As is standard, if $\theta_1, \ldots, \theta_k$ are eigenvalues of a graph G with multiplicities m_1, \ldots, m_k, respectively, we use the notation $\text{Spec} G = \begin{pmatrix} \theta_1 & \ldots & \theta_k \\ m_1 & \ldots & m_k \end{pmatrix}$ to describe the spectrum of G. We have the following fact.

Proposition 1.6. [1][11]

Let R be a finite local ring with maximal ideal M of size m. Then

$$\text{Spec} G_R = \begin{pmatrix} |R^\times| & -m \\ 1 & |R| - 1 \end{pmatrix} \begin{pmatrix} 0 \\ \frac{|R|}{m} - 1 \frac{|R|}{m} (m - 1) \end{pmatrix}.$$

In particular, if F is a finite field, then

$$\text{Spec} G_F = \begin{pmatrix} |F^\times| & -1 \\ 1 & |F^\times| \end{pmatrix}.$$

When $R = \mathbb{Z}_n$, Bašić et al. [3] have investigated a perfect state transfer on G_R. They proved that if n and $n/2$ are not square-free integers, there is a PST in $G_{\mathbb{Z}_n}$. Moreover, they showed that the only unitary Cayley graphs of the ring \mathbb{Z}_n that have a PST are K_2 (path of length two) and C_4 (4-cycle).

In this work, using Propositions 1.3 and 1.6 we characterize which local rings allowing PST occurring in its unitary Cayley graph in Section 2. Further developments when R is a product of local rings are studied in Section 3.

2. PST of G_R when R is Local

Throughout this section, we let R be a finite local ring with unique maximal ideal M of size m. For $k, l \in \mathbb{N}$, we write $0_{k \times l}$ and $J_{k \times l}$ for the $k \times l$ matrix whose all entries are 0 and 1, respectively. We
also use \(\bar{0}_k = 0_{k \times 1} \) and \(\bar{1}_k = J_{k \times 1} \). By Proposition 1.5 (ii), we have

\[
A_{GR} = \begin{bmatrix}
0_{m \times m} & J_{m \times m} & J_{m \times m} & \cdots & J_{m \times m} \\
J_{m \times m} & 0_{m \times m} & J_{m \times m} & \cdots & J_{m \times m} \\
J_{m \times m} & J_{m \times m} & 0_{m \times m} & \cdots & J_{m \times m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
J_{m \times m} & J_{m \times m} & J_{m \times m} & \cdots & 0_{m \times m}
\end{bmatrix}.
\]

By Proposition 1.6, \(G_R \) has eigenvalues \(\theta_1 = |R^×|, \theta_2 = -m \) and \(\theta_3 = 0 \) with multiplicities \(\frac{|R|}{m} - 1 \) and \(\frac{|R|}{m} (m - 1) \), respectively, and eigenspace spanned, respectively, by the columns of the following orthogonal matrices:

\[
A_1 = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}_{|R| \times 1}, \quad A_2 = \begin{bmatrix}
\bar{1}_m & \frac{1}{2} \bar{1}_m & \frac{1}{3} \bar{1}_m & \cdots & \frac{1}{\frac{|R|}{m} - 1} \bar{1}_m \\
-\bar{1}_m & \frac{1}{2} \bar{1}_m & \frac{1}{3} \bar{1}_m & \cdots & \frac{1}{\frac{|R|}{m} - 1} \bar{1}_m \\
\bar{0}_m & -\bar{1}_m & \frac{1}{3} \bar{1}_m & \cdots & \frac{1}{\frac{|R|}{m} - 1} \bar{1}_m \\
\bar{0}_m & \bar{0}_m & -\bar{1}_m & \cdots & \frac{1}{\frac{|R|}{m} - 1} \bar{1}_m \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\bar{0}_m & \bar{0}_m & \bar{0}_m & \cdots & \frac{1}{\frac{|R|}{m} - 1} \bar{1}_m \end{bmatrix}_{|R| \times \frac{|R|}{m} - 1},
\]

and

\[
A_3 = \begin{bmatrix} W \\ \vdots \\ W \end{bmatrix}_{|R| \times \frac{|R|}{m} (m - 1)}
\]

where

\[
W = \begin{bmatrix} 1 & 1 & 1 \\
\omega & \omega^2 & \omega^{m-1} \\
\omega^2 & \omega^4 & \omega^{2(m-1)} \\
\vdots & \vdots & \vdots \\
\omega^{m-1} & \omega^{2(m-1)} & \omega^{(m-1)(m-1)} \end{bmatrix}_{m \times (m - 1)} \quad \text{and} \quad \omega = \exp(2\pi i/m).
\]

Using Theorem 1.2, the standard matrices of \(E_j, j = 1, 2, 3 \), can be directly computed. We record them in the next theorem.

Theorem 2.1. Let \(R \) be a finite local ring with unique maximal ideal \(M \) of size \(m \). For \(j \in \{1, 2, 3\} \), let \(E_j \) be the orthogonal projection on the eigenspace belonging to \(\theta_j \) of \(A_{GR} \). Then

(i) \(E_1 = \frac{1}{|R|} J_{|R| \times |R|} \),

(ii) \(E_2 = \begin{bmatrix} \bar{u}_1 & \bar{u}_2 & \cdots & \bar{u}_{|R| - 1} & \bar{u}_{|R|} \end{bmatrix} \), where

\[
\bar{w}_s = \sum_{l=1}^{\frac{|R|}{m} - 1} \frac{\bar{u}_l}{(l+1)m}, \quad \bar{w}_{km+s} = \sum_{l=k}^{\frac{|R|}{m} - 1} \frac{\bar{u}_l}{(l+1)m} - \frac{\bar{u}_k}{(k+1)m}, \quad \bar{w}_{|R| - m + s} = \frac{m - |R|}{|R|m} \bar{u}_{\frac{|R|}{m} - 1}.
\]
for all \(s \in \{1, 2, \ldots, m\}, \ k \in \{1, 2, \ldots, \frac{|R|}{m} - 2\} \) and \(\bar{u}_l \) is the \(l \)th column of \(A_2 \) for all \(l \in \{1, 2, \ldots, \frac{|R|}{m} - 1\} \), and

\[
(iii) \quad E_3 = \frac{1}{m} \begin{bmatrix}
 M & M & \cdots & M
 \end{bmatrix}_{|R| \times |R|}, \quad \text{where } M = \begin{bmatrix}
 m - 1 & -1 & -1 & -1 \\
 -1 & -1 & -1 & m - 1 \\
 -1 & -1 & -1 & -1 \\
 \vdots & \vdots & \vdots & \vdots \\
 -1 & -1 & m - 1 & -1 \\
 -1 & m - 1 & -1 & -1
 \end{bmatrix}_{m \times m}.
\]

The above computations and Corollary 1.4 give the following necessity condition.

Theorem 2.2. Let \(R \) be a finite local ring with the maximal ideal \(M \) of size \(m \). If there is a perfect state transfer from vertex \(v_j \) to vertex \(v_k \) in the graph \(G_R \) for some \(1 \leq j < k \leq |R| \), then \(m \) is 1 or 2.

Proof. By Corollary 1.4 we have \(E_3|v_j| = \pm E_3|v_k| \). Thus, the \(j \)th column of \(E_3 \) is equal to \(\pm \) the \(k \)th column of \(E_3 \), which implies that \(m - 1 = -1, 0 \) or 1. Since \(m > 0 \), \(m = 1 \) or 2. \(\square \)

Note that if \(m = 1 \), then \(R \) is a finite field. We obtain a further result on the number of elements of \(R \) in the next theorem.

Theorem 2.3. Let \(R \) be the finite field with \(q \) elements. Then there is a perfect state transfer in the graph \(G_R \) if and only if \(q = 2 \).

Proof. If \(q = 2 \), then \(A_{GR} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) and \(H(t) = e^{itA_{GR}} = \begin{bmatrix} \cos t & i \sin t \\ i \sin t & \cos t \end{bmatrix} \) for all \(t \geq 0 \). Thus, \(H(\frac{\pi}{2}) = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \) and \(G_R \) has a perfect state transfer at \(t = \frac{\pi}{2} \). Conversely, assume that \(q \geq 3 \). We have

\[
E_2 = [\vec{w}_1 \ \vec{w}_2 \ \cdots \ \vec{w}_{q-1} \ \vec{w}_q],
\]

where

\[
\vec{w}_1 = \sum_{l=1}^{q-1} \frac{\bar{u}_l}{l+1}, \quad \vec{w}_s = \sum_{l=s}^{q-1} \frac{\bar{u}_l}{l+1} - \frac{\bar{u}_{s-1}}{||\bar{u}_{s-1}||^2} \ (s = 2, 3, \ldots, q-1), \quad \vec{w}_q = \left(1 - \frac{q}{q}
ight) \bar{u}_{q-1},
\]

and \(\bar{u}_l \) is the \(l \)th column of \(A_2 \) for all \(l \in \{1, 2, \ldots, q-1\} \). Let \(1 \leq j < k \leq q \).

Case 1. \(j = 1 \) and \(k \in \{2, 3, \ldots, q - 1\} \). Since

\[
\vec{w}_1 - \vec{w}_k = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 1/2 \\ -1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \cdots + \frac{1}{k} \begin{bmatrix} 1/k-1 \\ -1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \left(\frac{k-1}{k}\right) \begin{bmatrix} 1/k-1 \\ -1 \\ 0 \\ \vdots \\ 0 \end{bmatrix},
\]
The first entry of $\vec{w}_1 - \vec{w}_k$ is nonzero. Also,

\[
\vec{w}_1 + \vec{w}_k = \frac{1}{2} \begin{bmatrix}
1 \\
-1 \\
0 \\
\vdots \\
0
\end{bmatrix} + \frac{1}{3} \begin{bmatrix}
1/2 \\
-1 \\
0 \\
\vdots \\
0
\end{bmatrix} + \cdots + \frac{1}{k} \begin{bmatrix}
1/(k-1) \\
\vdots \\
0 \\
\vdots \\
0
\end{bmatrix} + \frac{2}{k+1} \begin{bmatrix}
1/k \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

The last entry of $\vec{w}_1 + \vec{w}_k$ is nonzero. Hence, $\vec{w}_1 \neq \pm \vec{w}_k$.

Case 2. $j = 1$ and $k = q$. Since

\[
\vec{w}_1 - \vec{w}_q = \frac{1}{2} \begin{bmatrix}
1 \\
-1 \\
0 \\
\vdots \\
0
\end{bmatrix} + \frac{1}{3} \begin{bmatrix}
1/q-1 \\
-1 \\
0 \\
\vdots \\
0
\end{bmatrix} + \cdots + \frac{1}{q} \begin{bmatrix}
1/q-1 \\
\vdots \\
0 \\
\vdots \\
0
\end{bmatrix} - \left(\frac{q-1}{q} \right) \begin{bmatrix}
1/q-1 \\
\vdots \\
0 \\
\vdots \\
0
\end{bmatrix},
\]

we have the qth entry of $\vec{w}_1 - \vec{w}_q$ is -1 and of $\vec{w}_1 + \vec{w}_q$ is $-\frac{2+q}{q} \geq -\frac{2+3}{3} \neq 0$ because $q > 3$. Thus, $\vec{w}_1 \neq \pm \vec{w}_k$.
Case 3. $j, k \in \{2, \ldots, q-1\}$. Since

$$
\vec{w}_j - \vec{w}_k = \frac{1}{j+1} - 1 + \cdots + \frac{1}{k} \begin{bmatrix}
\frac{1}{j} \\
\vdots \\
\frac{1}{j} \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix}
- \left(\frac{j-1}{j}\right) \begin{bmatrix}
\frac{1}{k-1} \\
\vdots \\
\frac{1}{k-1} \\
-1 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix}
+ \left(\frac{k-1}{k}\right) \begin{bmatrix}
-1 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix},
$$

the kth entry of $\vec{w}_j - \vec{w}_k$ is -1. Moreover,

$$
\vec{w}_j + \vec{w}_k = \frac{1}{j+1} - 1 + \cdots + \frac{1}{k} \begin{bmatrix}
\frac{1}{j} \\
\vdots \\
\frac{1}{j} \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix}
+ \frac{2}{k+1} \begin{bmatrix}
\frac{1}{k-1} \\
\vdots \\
\frac{1}{k-1} \\
-1 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix}
+ \cdots + \frac{1}{q} \begin{bmatrix}
\frac{1}{q-1} \\
\vdots \\
\frac{1}{q-1} \\
-1 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix},
$$

$$
- \left(\frac{j-1}{j}\right) \begin{bmatrix}
\frac{1}{j-1} \\
\vdots \\
\frac{1}{j-1} \\
-1 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix}
- \left(\frac{k-1}{k}\right) \begin{bmatrix}
\frac{1}{k-1} \\
\vdots \\
\frac{1}{k-1} \\
-1 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix}.
$$
the \(q \)th row of \(\vec{w}_j + \vec{w}_k \) is not equal to 0.

Case 4. \(j, k = 2, \ldots, q - 1, k = q \). Since

\[
\vec{w}_j - \vec{w}_q = \frac{1}{j + 1} + \cdots + \frac{1}{q} - \left(\frac{i - 1}{j} \right) - \left(\frac{1 - q}{q} \right),
\]

and

\[
\vec{w}_j + \vec{w}_q = \frac{1}{j + 1} + \cdots + \frac{1}{q} - \left(\frac{i - 1}{j} \right) + \left(\frac{1 - q}{q} \right),
\]

the \(q \)th entry of \(\vec{w}_j - \vec{w}_q \) is not equal to 0, and of \(\vec{w}_j + \vec{w}_q = \frac{2 + q}{q} \geq \frac{1}{3} > 0 \). Hence, \(\vec{w}_j \neq \pm \vec{w}_k \) for all \(1 \leq j < k \leq q \). That is, \(E_2 |v_j\rangle \neq \pm E_2 |v_k\rangle \), for all \(1 \leq j < k \leq q \).

By Proposition 1.4 there is no perfect state transfers in \(G_R \).

For \(m = 2 \), we have \(|R| = 2^k \) for some \(k \geq 2 \). We get the following result.

Theorem 2.4. Let \(R \) be a finite local ring with maximal ideal \(M \) of size two. Then the graph \(G_R \) has a perfect state transfer at time \(t = \frac{\pi}{2} \).

Proof. Recall that \(G_R \) has three distinct eigenvalues, \(\theta_1 = 2^k - 2, \theta_2 = -2 \) and \(\theta_3 = 0 \). Choose \(\gamma = -1 \) and \(t = \frac{\pi}{2} \). Then \(\exp(-i t \theta_1) = \exp(-i t \theta_2) = -1 \) and \(\exp(-i t \theta_3) = 1 \). Following Proposition 1.3 and Theorem 2.1 we show

\[
E_1 |v_1\rangle = E_1 |v_2\rangle = \gamma \exp(-i t \theta_1) E_1 |v_2\rangle,
\]

\[
E_2 |v_1\rangle = E_2 |v_2\rangle = \gamma \exp(-i t \theta_2) E_2 |v_2\rangle,
\]

and

\[
E_3 |v_1\rangle = -E_3 |v_2\rangle = \gamma \exp(-i t \theta_3) E_3 |v_2\rangle.
\]

Hence, \(G_R \) has a perfect state transfer from vertex \(v_1 \) to vertex \(v_2 \) at time \(t = \frac{\pi}{2} \).
We conclude all discussions in this section in the next theorem.

Theorem 2.5. Let R be a finite local ring with maximal ideal M of size m. Then G_R has a perfect state transfer if and only if $R = \mathbb{F}_2$ or $m = 2$. In particular, a perfect state occurs at time $t = \frac{\pi}{2}$.

Moreover, if R is a local ring with $m = 2$, it follows from [6] that $|R|$ must be 4. Thus, R is \mathbb{Z}_4 or $\mathbb{Z}_2[x]/(x^2)$ as shown in [12]. Hence, we conclude that:

Corollary 2.6. Let R be a finite local ring. Then G_R has a perfect state transfer if and only if $R = \mathbb{F}_2$ or \mathbb{Z}_4 or $\mathbb{Z}_2[x]/(x^2)$.

3. Further Developments

In this section, we present some results when R is a product of finite local rings. We begin with the following lemma.

Lemma 3.1. Let G and H be undirected graphs. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be eigenvalues of G corresponding to eigenvectors $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$, respectively, and let $\mu_1, \mu_2, \ldots, \mu_m$ be eigenvalues of H corresponding to eigenvectors $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_m$, respectively.

(i) For $k \in \{1, 2, \ldots, n\}$ and $l \in \{1, 2, \ldots, m\}$, we have $\vec{u}_k \otimes \vec{w}_l$ is an eigenvectors of $G \otimes H$ with eigenvalue $\lambda_k \mu_l$.

(ii) Let $g_1, g_2 \in V(G)$ and $h_1, h_2 \in V(H)$. Then

$$
\langle (g_2, h_2) | \exp(itA_{G \otimes H}) | (g_1, h_1) \rangle = \sum_{k=1}^{n} \sum_{l=1}^{m} \langle h_2 | \vec{w}_l \vec{w}_l^T | h_1 \rangle \exp(it\lambda_k \mu_l) \langle \vec{u}_k \vec{u}_k^T | g_1 \rangle.
$$

Proof. (i) Let $k \in \{1, 2, \ldots, n\}$ and $l \in \{1, 2, \ldots, m\}$. Then

$$
A_{G \otimes H}(\vec{u}_k \otimes \vec{w}_l) = A_G \vec{u}_k \otimes A_H \vec{w}_l = \lambda_k \vec{u}_k \otimes \mu_l \vec{w}_l = \lambda_k \mu_l (\vec{u}_k \otimes \vec{w}_l).
$$

(ii) Let $g_1, g_2 \in V(G)$ and $h_1, h_2 \in V(H)$. From (i), let

$$
P = \begin{bmatrix}
\vec{u}_1 \otimes \vec{w}_1 & \vec{u}_1 \otimes \vec{w}_2 & \cdots & \vec{u}_1 \otimes \vec{w}_m & \vec{u}_2 \otimes \vec{w}_1 & \vec{u}_2 \otimes \vec{w}_2 & \cdots & \vec{u}_n \otimes \vec{w}_m
\end{bmatrix}
$$

be the $nm \times nm$ matrix such that

$$
\exp(itA_{G \otimes H}) = P \begin{bmatrix}
e^{it\lambda_1 \mu_1} & e^{it\lambda_1 \mu_2} & \cdots & e^{it\lambda_1 \mu_m}
e^{it\lambda_2 \mu_1} & e^{it\lambda_2 \mu_2} & \cdots & e^{it\lambda_2 \mu_m}
e^{it\lambda_m \mu_1} & e^{it\lambda_m \mu_2} & \cdots & e^{it\lambda_m \mu_m}
\end{bmatrix} P^T.
$$
Then

\[
\langle (g_2, h_2) \mid \exp(itA_{G \times R}) \mid (g_1, h_1) \rangle = \sum_{k=1}^{n} \sum_{l=1}^{m} \langle g_2 | \vec{u}_k \vec{u}_k^T | g_1 \rangle \langle h_2 | \vec{w}_l \vec{w}_l^T | h_1 \rangle \exp(it \lambda_k \mu_l)
\]

\[
= \sum_{k=1}^{n} \langle g_2 | \left(\sum_{l=1}^{m} \langle h_2 | \vec{w}_l \vec{w}_l^T | h_1 \rangle \exp(it \lambda_k \mu_l) \right) \vec{u}_k \vec{u}_k^T | g_1 \rangle.
\]

Hence, we have the lemma. \(\square \)

If \(R \) is a finite local ring and \(G_R \) has no even eigenvalues, then by Proposition 1.6, \(R \) is the finite field of \(2^r \) elements for some \(r \in \mathbb{N} \). Thus, \(G_R \) is complete and its adjacency matrix is given by

\[
A_{G_R} = \begin{bmatrix}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 0
\end{bmatrix}.
\]

It can be shown that for \(j \in \{0, 1, \ldots, |R| - 1\} \), the vector

\[
\vec{w}_j = \frac{1}{|R|} \begin{bmatrix}
1 \\
\omega_j \\
\omega_j^2 \\
\vdots \\
\omega_j^{|R| - 1}
\end{bmatrix}^T,
\]

where \(\omega_j = \exp \left(\frac{2 \pi i j}{|R|} \right) \),

is an eigenvector of \(A_{G_R} \) with eigenvalue \(\mu_j = \sum_{k=1}^{|R|-1} \omega_j^k \). Note that \(\mu_0 = |R| - 1 \) and \(\mu_j = -1 \) if \(j \geq 1 \) (which are the same results found in Proposition 1.6). Moreover, we observe that

\[
(3.1) \quad \langle 0 | \vec{w}_j \vec{w}_j^T | 0 \rangle = \frac{1}{|R|}
\]

for all \(j \in \{0, 1, \ldots, |R| - 1\} \). The following proposition was proved for circulant graphs in [7]. However, the observation above yields the same result.

Proposition 3.2. Let \(G \) be a graph on \(n \) vertices with perfect state transfer at time \(t_G \) so that

\[
t_G \text{Spec} G \subseteq \mathbb{Z} \pi := \{a \pi : a \in \mathbb{Z})\).
\]

Then \(G \otimes G_R \) has a perfect state transfer at time \(t_G \) if \(R \) is a finite local ring and \(G_R \) has no even eigenvalues (that is, \(R \) is the finite field of \(2^r \) elements for some \(r \in \mathbb{N} \)).

Proof. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be eigenvalues of \(G \) corresponding to eigenvectors \(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n \), respectively. Assume that \(G \) has a perfect state transfer at time \(t_G \) from vertex \(g_1 \) to vertex \(g_2 \). By Lemma 3.1(ii)
and Eq. (3.1), we have
\[
\langle (g_1, 0) \mid e^{it_G A_G \times H} \mid (g_2, 0) \rangle = \sum_{k=1}^{n} \langle g_1 \mid \sum_{j=0}^{[R]-1} \langle 0 \mid \vec{w}_j \vec{w}_j^T \mid 0 \rangle \exp(it_G \lambda_k \mu_j) \vec{u}_k \vec{u}_k^T \mid g_2 \rangle
\]
\[
= \frac{1}{|R|} \sum_{k=1}^{n} \langle g_1 \mid \exp(it_G \lambda_k \mu_0) + \sum_{j=1}^{[R]-1} \exp(it_G \lambda_k \mu_j) \rangle \vec{u}_k \vec{u}_k^T \mid g_2 \rangle
\]
\[
= \frac{1}{|R|} \sum_{k=1}^{n} \langle g_1 \mid \exp(it_G \lambda_k (|R| - 1)) + \sum_{j=1}^{[R]-1} \exp(it_G \lambda_k (-1)) \rangle \vec{u}_k \vec{u}_k^T \mid g_2 \rangle
\]
\[
= \sum_{k=1}^{n} \langle g_1 \mid \exp(-it_G \lambda_k) \vec{u}_k \vec{u}_k^T \mid g_2 \rangle \quad \text{(because } t_G \lambda_k \in \mathbb{Z} \pi)\]
\[
= \langle g_1 \mid \exp(-it_G A_G) \mid g_2 \rangle.
\]
Since a perfect state transfer occurs from vertex g_1 to vertex g_2,
\[
|\langle g_1 \mid \exp(-it_G A_G) \mid g_2 \rangle| = |\langle g_1 \mid \exp(it_G A_G) \mid g_2 \rangle| = 1,
\]
so we have a perfect state transfer from vertex $(g_1, 0)$ to vertex $(g_2, 0)$. □

Theorem 2.5 and Proposition 3.2 give the following theorem.

Theorem 3.3. Let \mathbb{F}_{2^r} be the finite field with 2^r elements and R a finite local ring with $m = 2$. Then $G_R \otimes G_{\mathbb{F}_{2^r}}$ has a perfect state transfer. Moreover, let $m \in \mathbb{N}$ and $\mathbb{F}_{2^{r_1}}, \mathbb{F}_{2^{r_2}}, \ldots, \mathbb{F}_{2^{r_m}}$ be the finite fields with $2^{r_1}, 2^{r_2}, \ldots, 2^{r_m}$ elements, respectively. Then $G_R \otimes G_{\mathbb{F}_{2^{r_1}}} \otimes \cdots \otimes G_{\mathbb{F}_{2^{r_m}}}$ has a perfect state transfer.

Proof. Since R is a local ring with $m = 2$, by Theorem 2.5 we have a perfect state transfer at time $t = \frac{\pi}{2}$. It follows from Proposition 1.6 that $t \text{ Spec } G_R \subseteq \mathbb{Z} \pi$. Hence, Proposition 3.2 inductively gives the desired results. □

Acknowledgments

This work grows out of the second author’s senior project at Chulalongkorn University written under the direction of the first author to whom he expresses his gratitude. The authors would also like to thank the referees for valuable comments and suggestions which improved the paper.

References

Yotsanan Meemark
Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
Email: yotsanan.m@chula.ac.th

Songpon Sriwongsa
Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
Email: songpon_sriwongsa@hotmail.com