RECIPROCAL DEGREE DISTANCE OF SOME GRAPH OPERATIONS

K. PATTABIRAMAN* AND M. VIJAYARAGAVAN

Communicated by Ali Reza Ashrafi

Abstract. The reciprocal degree distance (RDD), defined for a connected graph G as vertex-degree-weighted sum of the reciprocal distances, that is, $\text{RDD}(G) = \sum_{u,v \in V(G)} \frac{d_G(u)+d_G(v)}{d_G(u,v)}$. The reciprocal degree distance is a weight version of the Harary index, just as the degree distance is a weight version of the Wiener index. In this paper, we present exact formulae for the reciprocal degree distance of join, tensor product, strong product and wreath product of graphs in terms of other graph invariants including the degree distance, Harary index, the first Zagreb index and first Zagreb coindex. Finally, we apply some of our results to compute the reciprocal degree distance of fan graph, wheel graph, open fence and closed fence graphs.

1. Introduction

All the graphs considered in this paper are simple and connected. For vertices $u, v \in V(G)$, the distance between u and v in G, denoted by $d_G(u,v)$, is the length of a shortest (u,v)-path in G and let $d_G(v)$ be the degree of a vertex $v \in V(G)$. For two simple graphs G and H their tensor product, denoted by $G \times H$, has vertex set $V(G) \times V(H)$ in which (g_1,h_1) and (g_2,h_2) are adjacent whenever g_1g_2 is an edge in G and h_1h_2 is an edge in H. Note that if G and H are connected graphs, then $G \times H$ is connected only if at least one of the graph is nonbipartite. The strong product of graphs G and H, denoted by $G \boxprod H$, is the graph with vertex set $V(G) \times V(H)$ in which (g_1,h_1) and (g_2,h_2) are adjacent whenever g_1g_2 is an edge in G or, $g_1 = g_2$ and h_1h_2 is an edge in H, see Fig.1. The tensor product of graphs has been extensively studied in relation

MSC(2010): Primary: 05C12; Secondary: 05C76.

Keywords: Reciprocal degree distance, Harary index, Graph operations.

Received: 20 August 2013 , Accepted: 15 September 2013.

*Corresponding author.
A **sum** \(G + H \) of two graphs \(G \) and \(H \) with disjoint vertex sets \(V(G) \) and \(V(H) \) is the graph on the vertex set \(V(G) \cup V(H) \) and the edge set \(E(G) \cup E(H) \cup \{ uv \mid u \in V(G), \ v \in V(H) \} \). Hence, the sum of two graphs is obtained by connecting each vertex of one graph to each vertex of the other graph, while keeping all edges of both graphs. The sum of two graphs is sometimes also called a *join*, and is denoted by \(G \nabla H \).

A **topological index** of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds [9]. There exist several types of such indices, especially those based on vertex and edge distances. One of the most intensively studied topological indices is the Wiener index; for other related topological indices see [22].

Let \(G \) be a connected graph. Then **Wiener index** of \(G \) is defined as \(W(G) = \frac{1}{2} \sum_{u,v \in V(G)} d_G(u,v) \) with the summation going over all pairs of distinct vertices of \(G \). Similarly, the **Harary index** of \(G \) is defined as \(H(G) = \frac{1}{2} \sum_{u,v \in V(G)} \frac{1}{d_G(u,v)} \).

Dobrynin and Kochetova [5] and Gutman [8] independently proposed a vertex-degree-weighted version of Wiener index called degree distance or Schultz molecular topological index, which is defined for a connected graph \(G \) as \(DD(G) = \frac{1}{2} \sum_{u,v \in V(G)} (d_G(u) + d_G(v))d_G(u,v) \), where \(d_G(u) \) is the degree of the vertex \(u \) in \(G \). Note that the degree distance is a degree-weight version of the Wiener index. Hua and Zhang [11] introduced a new graph invariant named reciprocal degree distance, which can be seen as a degree-weight version of Harary index, that is, \(RDD(G) = \frac{1}{2} \sum_{u,v \in V(G)} \frac{d_G(u)+d_G(v)}{d_G(u,v)} \).

The Harary index of a graph \(G \) was introduced independently by Plavsic et al. [20] and by Ivanciuc et al. [13] in 1993. Its applications and mathematical properties are well studied in [4, 7, 23, 15]. Zhou et al. [24] have obtained the lower and upper bounds of the Harary index of a connected graph. Very recently, Xu et al. [21] have obtained lower and upper bounds for the Harary index of a connected graph in relation to \(\chi(G) \), chromatic number of \(G \) and \(\omega(G) \), clique number of \(G \), and characterized the extremal graphs that attain the lower and upper bounds of Harary index. Also, Feng et al. [7]
have given a sharp upper bound for the Harary indices of graphs based on the matching number, that is, the size of a maximum matching. Various topological indices on tensor product, Cartesian product and strong product have been studied various authors, see [17, 18, 19, 14, 10]. Hua and Zhang [11] have obtained lower and upper bounds for the reciprocal degree distance of graph in terms of other graph invariants including the degree distance, Harary index, the first Zagreb index, the first Zagreb coindex, pendant vertices, independence number, chromatic number and vertex-, and edge-connectivity.

The first Zagreb index and first Zagreb coindex are defined as
\[M_1(G) = \sum_{u \in V(G)} d_G(u)^2 \] and
\[\overline{M}_1(G) = \sum_{uv \in E(G)} (d_G(u) + d_G(v)). \] In fact, one can rewrite the first Zagreb index as
\[M_1(G) = \sum_{uv \in E(G)} (d_G(u) + d_G(v)). \] The Zagreb indices are found to have applications in QSPR and QSAR studies as well, see [6].

Denoted by \(P_n, C_n \) and \(K_n \) the path, cycle and complete graphs on \(n \) vertices, respectively. We call \(C_3 \) a triangle. In this paper, we present exact formulae for the reciprocal degree distance of join, tensor product, strong product and wreath product of graphs in terms of other graph invariants including the degree distance, Harary index, the first Zagreb index and first Zagreb coindex. Finally, we apply some of our results to compute the reciprocal degree distance of fan graph, wheel graph, open fence and closed fence graphs.

2. Reciprocal degree distance of \(G + H \)

In this section, we compute the reciprocal degree distance of join of two connected graphs.

Theorem 2.1. Let \(G \) and \(H \) be graphs with \(n \) and \(m \) vertices, respectively. Then \(\text{RDD}(G + H) = M_1(G) + M_1(H) + \frac{1}{2}(\overline{M}_1(G) + \overline{M}_1(H)) + 3(n |E(H)| + m |E(G)|) + \frac{nm}{2}(3n + 3m - 2). \)

Proof. Set \(V(G) = \{u_1, u_2, \ldots, u_n\} \) and \(V(H) = \{v_1, v_2, \ldots, v_m\} \). By definition of the join of two graphs, one can see that,
\[
d_{G+H}(x) = \begin{cases}
 d_G(x) + |V(H)|, & \text{if } x \in V(G) \\
 d_H(x) + |V(G)|, & \text{if } x \in V(H)
\end{cases}
\]
and
\[
d_{G+H}(u, v) = \begin{cases}
 0, & \text{if } u = v \\
 1, & \text{if } uv \in E(G) \text{ or } uv \in E(H) \text{ or } (u \in V(G) \text{ and } v \in V(H)) \\
 2, & \text{otherwise.}
\end{cases}
\]
Therefore,
 RDD(G + H) = \frac{1}{2} \sum_{u,v \in V(G+H)} \frac{d_{G+H}(u) + d_{G+H}(v)}{d_{G+H}(u,v)} \\
= \frac{1}{2} \left(\sum_{uv \in E(G)} (d_{G}(u) + m + d_{G}(v) + m) + \sum_{uv \in E(H)} (d_{H}(u) + n + d_{H}(v) + n) \right) \\
+ \sum_{u \in V(G), v \in V(H)} (d_{G}(u) + m + d_{H}(v) + n) \\
= M_1(G) + M_1(H) + \frac{1}{2} (M_1(G) + M_1(H)) + 3(n |E(H)| + m |E(G)|) \\
+ \frac{nm}{2} (3n + 3m - 2).

Using Theorem 2.1, we have the following corollary.

Corollary 2.2. Let G be graph on n vertices. Then RDD(G + K_m) = M_1(G) + \frac{1}{2} M_1(G) + 3m |E(G)| + \frac{m}{2} \left(2(m - 1)^2 + 3n(m - 1) + n(3n + 3m - 2)\right).

One can observe that M_1(C_n) = 4n, n \geq 3, M_1(P_1) = 0, M_1(P_n) = 4n - 6, n > 1 and M_1(K_n) = n(n - 1)^2. Similarly, M_1(K_n) = 0, M_1(P_n) = 2(n - 2)^2 and M_1(C_n) = 2n(n - 3).

Using M_1(C_n), M_1(P_n), M_1(P_n) and M_1(C_n) and Corollary 2.2, we compute the formulae for reciprocal degree distance of fan and wheel graphs, P_n + K_1 and C_n + K_1, see Figs. 2a and 2b.

Example 1.

(i) RDD(P_n + K_1) = \frac{1}{2} (5n^2 + 7n - 10).

(ii) RDD(C_n + K_1) = \frac{1}{2} (5n^2 + 9n).

3. Reciprocal degree distance of tensor product of graphs

In this section, we compute the reciprocal degree distance of G × K_r.

The proof of the following lemma follows easily from the properties and structure of G × K_r. The lemma is used in the proof of the main theorem of this section.
Lemma 3.1. Let G be a connected graph on $n \geq 2$ vertices. For any pair of vertices $x_{ij}, x_{kp} \in V(G \times K_r), r \geq 3$
(i) If $v_iv_k \in E(G)$, then

$$d_{G\times K_r}(x_{ij}, x_{kp}) = \begin{cases}
1, & \text{if } j \neq p, \\
2, & \text{if } j = p \text{ and } v_iv_k \text{ is on a triangle of } G, \\
3, & \text{if } j = p \text{ and } v_iv_k \text{ is not on a triangle of } G.
\end{cases}$$

(ii) If $v_i v_k \notin E(G)$, then $d_{G\times K_r}(x_{ij}, x_{kp}) = d_G(v_i, v_k)$.
(iii) $d_{G\times K_r}(x_{ij}, x_{ip}) = 2$.

Theorem 3.2. Let G be a connected graph with $n \geq 2$ vertices and m edges. Then

$$\text{RDD}(G \times K_r) = r(r-1) \left(r\text{RDD}(G) - \frac{M_r(G)}{2} - \frac{1}{6} \sum_{u_iv_k \in E_2} (d(u_i) + d(u_k)) + (r-1)m \right),$$

where $r \geq 3$.

Proof. Set $V(G) = \{u_1, u_2, \ldots, u_n\}$ and $V(K_r) = \{v_1, v_2, \ldots, v_r\}$. Let x_{ij} denote the vertex (u_i, v_j) of $G \times K_r$. The degree of the vertex x_{ij} in $G \times K_r$ is $d_G(u_i) d_{K_r}(v_j)$, that is, $d_{G\times K_r}(x_{ij}) = (r-1)d_G(u_i)$.

By the definition of reciprocal degree distance

$$\text{RDD}(G \times K_r) = \frac{1}{2} \sum_{x_{ij}, x_{kp} \in V(G \times K_r)} \frac{d_{G\times K_r}(x_{ij}) + d_{G\times K_r}(x_{kp})}{d_{G\times K_r}(x_{ij}, x_{kp})}$$

$$= \frac{1}{2} \left(\sum_{i=0}^{n-1} \sum_{j=0}^{r-1} \sum_{p=0}^{r-1} \frac{d_{G\times K_r}(x_{ij}) + d_{G\times K_r}(x_{ip})}{d_{G\times K_r}(x_{ij}, x_{ip})} + \sum_{i=0}^{n-1} \sum_{j=0}^{r-1} \sum_{k=0}^{r-1} \frac{d_{G\times K_r}(x_{ij}) + d_{G\times K_r}(x_{kj})}{d_{G\times K_r}(x_{ij}, x_{kj})} \right)$$

$$+ \sum_{i=0}^{n-1} \sum_{k=0}^{r-1} \sum_{j=0}^{r-1} \sum_{p=0}^{r-1} \frac{d_{G\times K_r}(x_{ij}) + d_{G\times K_r}(x_{kp})}{d_{G\times K_r}(x_{ij}, x_{kp})}$$

$$= \frac{1}{2} \{A_1 + A_2 + A_3\},$$

where A_1 to A_3 are the sums of the above terms, in order.

We shall calculate A_1 to A_3 of (3.1) separately.

(A_1) First we compute

$$\sum_{i=0}^{n-1} \sum_{j=0}^{r-1} \sum_{p=0}^{r-1} \frac{d_{G\times K_r}(x_{ij}) + d_{G\times K_r}(x_{ip})}{d_{G\times K_r}(x_{ij}, x_{ip})}$$

$$= \sum_{i=0}^{n-1} \sum_{j=0}^{r-1} \sum_{p=0}^{r-1} \frac{d_G(u_i)(r-1) + d_G(u_i)(r-1)}{2}, \quad \text{by Lemma 3.1}$$

$$= 2r(r-1)^2m.$$

(A_2) Next we compute

$$\sum_{j=0}^{r-1} \sum_{i=0}^{n-1} \sum_{k=0}^{r-1} \frac{d_{G\times K_r}(x_{ij}) + d_{G\times K_r}(x_{kj})}{d_{G\times K_r}(x_{ij}, x_{kj})}.$$

Let $E_1 = \{uv \in E(G) \mid uv \text{ is on a } C_3 \text{ in } G\}$ and $E_2 = E(G) - E_1$.

\[
\sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G \times K_r}(x_{ij}) + d_{G \times K_r}(x_{kj})}{d_{G \times K_r}(x_{ij}, x_{kj})} - \sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G \times K_r}(x_{ij}) + d_{G \times K_r}(x_{kj})}{d_{G \times K_r}(x_{ij}, x_{kj})} \frac{d_{G \times K_r}(x_{ij}) + d_{G \times K_r}(x_{kj})}{d_{G \times K_r}(x_{ij}, x_{kj})} \\
= \left(\sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G(u_i)(r-1)} + d_{G(u_k)(r-1)}}{d_{G(u_i, u_k)}} + \sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G(u_i)(r-1)} + d_{G(u_k)(r-1)}}{d_{G(u_i, u_k)}} \right) \\
+ \sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G(u_i)(r-1)} + d_{G(u_k)(r-1)}}{3}, \text{ by Lemma 3.1} \\
= (r-1) \left\{ \left(\sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G(u_i)} + d_{G(u_k)}}{d_{G(u_i, u_k)}} + \sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G(u_i)} + d_{G(u_k)}}{d_{G(u_i, u_k)}} + \sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G(u_i)} + d_{G(u_k)}}{d_{G(u_i, u_k)}} \right) \\
- 2 \sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G(u_i)} + d_{G(u_k)}}{d_{G(u_i, u_k)}} \right\} \\
= (r-1) \left\{ 2RDD(G) - \sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G(u_i)} + d_{G(u_k)}}{d_{G(u_i, u_k)}} - \sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G(u_i)} + d_{G(u_k)}}{d_{G(u_i, u_k)}} \right\} \\
= (r-1) \left\{ 2RDD(G) - M_1(G) - \sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G(u_i)} + d_{G(u_k)}}{d_{G(u_i, u_k)}} \right\} .
\]

Now summing (3.3) over \(j = 0, 1, \ldots, r-1 \), we get,

\[
(3.4) \sum_{j=0}^{r-1} \left(\sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G \times K_r}(x_{ij}) + d_{G \times K_r}(x_{kj})}{d_{G \times K_r}(x_{ij}, x_{kj})} \right) = r(r-1) \left\{ 2RDD(G) - M_1(G) - \sum_{i,k=0 \atop i \neq k}^{n-1} \frac{d_{G(u_i)} + d_{G(u_k)}}{3} \right\} .
\]

(A3) Next we compute \(\sum_{i,k=0 \atop i \neq k}^{n-1} \left(\sum_{j,p=0 \atop j \neq p}^{r-1} \frac{d_{G \times K_r}(x_{ij}) + d_{G \times K_r}(x_{kp})}{d_{G \times K_r}(x_{ij}, x_{kp})} \right) . \)
\[\sum_{i, k = 0}^{n-1} \frac{r-1}{r} \sum_{i \neq k, j \neq p} \frac{d_{G \times K_r}(x_{ij}) + d_{G \times K_r}(x_{kp})}{d_{G \times K_r}(x_{ij}, x_{kp})} = \sum_{i, k = 0}^{n-1} \frac{r-1}{r} \sum_{i \neq k, j \neq p} \frac{d_G(u_i)(r-1) + d_G(u_k)(r-1)}{d_G(u_i, u_k)} , \text{ by Lemma 3.1} \]

\[= r(r-1)^2 \sum_{i, k = 0}^{n-1} \frac{d_G(u_i) + d_G(u_k)}{d_G(u_i, u_k)} \]

\[= 2r(r-1)^2 \text{RDD}(G). \]

Using (3.1) and the sums \(A_1, A_2 \) and \(A_3 \) in (3.2), (3.4) and (3.5), respectively, we have,

\[\text{RDD}(G \times K_r) = r(r-1) \left(r\text{RDD}(G) - \frac{1}{2} M_1(G) - \frac{1}{6} \sum_{u_i, u_k \in E_2} (d_G(u_i) + d_G(u_k)) + (r-1)m \right). \]

□

Using Theorem 3.2, we have the following corollaries.

Corollary 3.3. Let \(G \) be a connected graph on \(n \geq 2 \) vertices with \(m \) edges. If each edge of \(G \) is on a \(C_3 \), then \(\text{RDD}(G \times K_r) = r(r-1) \left(r\text{RDD}(G) - \frac{1}{2} M_1(G) + (r-1)m \right) \), where \(r \geq 3 \).

Corollary 3.4. If \(G \) is a connected triangle free graph on \(n \geq 2 \) vertices and \(m \) edges, then \(\text{RDD}(G \times K_r) = r(r-1) \left(r\text{RDD}(G) - \frac{2}{3} M_1(G) + (r-1)m \right) \).

4. Reciprocal degree distance of strong product of graphs

In this section, we obtain the reciprocal degree distance of \(G \boxtimes K_r \).

Theorem 4.1. Let \(G \) be a connected graph with \(n \) vertices and \(m \) edges. Then \(\text{ RDD}(G \boxtimes K_r) = r \left(r^2 \text{RDD}(G) + 2r(r-1)H(G) + 2r(r-1)m + n(r-1)^2 \right) \).

Proof. Set \(V(G) = \{ u_1, u_2, \ldots, u_n \} \) and \(V(K_r) = \{ v_1, v_2, \ldots, v_r \} \). Let \(x_{ij} \) denote the vertex \((u_i, v_j) \) of \(G \boxtimes K_r \). The degree of the vertex \(x_{ij} \) in \(G \boxtimes K_r \) is \(d_G(u_i) + d_{K_r}(v_j) + d_G(u_i)d_{K_r}(v_j) \), that is \(d_{G \boxtimes K_r}(x_{ij}) = rd_G(u_i) + (r-1) \). One can see that for any pair of vertices \(x_{ij}, x_{kp} \in V(G \boxtimes K_r) \), \(d_{G \boxtimes K_r}(x_{ij}, x_{kp}) = d_G(u_i, u_k) \).
By the definition of reciprocal degree distance

\[RDD(G \boxtimes K_r) = \frac{1}{2} \sum_{x_{ij}, x_{kp} \in V(G \boxtimes K_r)} \frac{d_{G \boxtimes K_r}(x_{ij}) + d_{G \boxtimes K_r}(x_{kp})}{d_{G \boxtimes K_r}(x_{ij}, x_{kp})} \]

\[= \frac{1}{2} \left(\sum_{i=0}^{n-1} \sum_{j=0, j \neq p}^{r-1} \frac{d_{G \boxtimes K_r}(x_{ij}) + d_{G \boxtimes K_r}(x_{ip})}{d_{G \boxtimes K_r}(x_{ij}, x_{ip})} + \sum_{i, k=0}^{n-1} \sum_{j, k \neq p}^{r-1} \frac{d_{G \boxtimes K_r}(x_{ij}) + d_{G \boxtimes K_r}(x_{kj})}{d_{G \boxtimes K_r}(x_{ij}, x_{kj})} \right) \]

\[+ \sum_{i, k=0}^{n-1} \sum_{j, p=0}^{r-1} \frac{d_{G \boxtimes K_r}(x_{ij}) + d_{G \boxtimes K_r}(x_{kp})}{d_{G \boxtimes K_r}(x_{ij}, x_{kp})} \]

(4.1)

\[= \frac{1}{2} \{ A_1 + A_2 + A_3 \}, \]

where \(A_1, A_2 \) and \(A_3 \) are the sums of the terms of the above expression, in order.

We shall obtain \(A_1 \) to \(A_3 \) of (4.1), separately.

\[A_1 = \sum_{i=0}^{n-1} \sum_{j=0, j \neq p}^{r-1} \frac{d_{G \boxtimes K_r}(x_{ij}) + d_{G \boxtimes K_r}(x_{ip})}{d_{G \boxtimes K_r}(x_{ij}, x_{ip})} \]

\[= \sum_{i=0}^{n-1} \sum_{j, p=0}^{r-1} \left(2d_G(u_i) + 2(r - 1) + 2(r - 1)d_G(u_i) \right) \]

(4.2)

\[= 4r^2(r - 1)m + 2nr(r - 1)^2 \]

\[A_2 = \sum_{j=0}^{r-1} \sum_{i, k=0}^{n-1} \frac{d_{G \boxtimes K_r}(x_{ij}) + d_{G \boxtimes K_r}(x_{kj})}{d_{G \boxtimes K_r}(x_{ij}, x_{kj})} \]

\[= \sum_{j=0}^{r-1} \sum_{i, k=0}^{n-1} \frac{d_G(u_i) + (r - 1)d_G(u_i) + d_G(u_k) + (r - 1)d_G(u_k) + 2(r - 1)}{d_G(u_i, u_k)} \]

\[= r \sum_{j=0}^{r-1} \sum_{i, k=0}^{n-1} \frac{d_G(u_i) + d_G(u_k)}{d_G(u_i, u_k)} + \sum_{j=0}^{r-1} \sum_{i, k=0}^{n-1} \frac{2(r - 1)}{d_G(u_i, u_k)} \]

(4.3)

\[= 2r^2RDD(G) + 4r(r - 1)H(G). \]

\[A_3 = \sum_{i, j=0}^{n-1} \sum_{k, p=0, j \neq p}^{r-1} \frac{d_{G \boxtimes K_r}(x_{ij}) + d_{G \boxtimes K_r}(x_{kp})}{d_{G \boxtimes K_r}(x_{ij}, x_{kp})} \]

\[= r^2(r - 1) \sum_{i, k=0}^{n-1} \frac{d_G(u_i) + d_G(u_k)}{d_G(u_i, u_k)} + 2(r - 1)^2 \sum_{i, k=0, i \neq k}^{n-1} \frac{1}{d_G(u_i, u_k)} \]

(4.4)

\[= 2r^2(r - 1)RDD(G) + 4r(r - 1)^2H(G). \]
Using (4.2), (4.3) and (4.4) in (4.1), we have

\[\text{RDD}(G \Box K_r) = r \left(r^2 \text{RDD}(G) + 2r(r-1)H(G) + 2r(r-1)m + n(r-1)^2 \right). \]

\[\square \]

By direct calculations we obtain expressions for the values of the Harary indices of \(P_n \) and \(C_n \).

\[H(P_n) = n \left(\sum_{i=1}^{n} \frac{1}{i} \right) - n \] and \(H(C_n) = \begin{cases} n \left(\sum_{i=1}^{n} \frac{1}{i} \right) - 1 & \text{n is even} \\ n \left(\sum_{i=1}^{n} \frac{1}{i} \right) & \text{n is odd} \end{cases} \)

The following are the reciprocal degree distance for complete graph, path and cycle on \(n \) vertices by direct calculations:

\[\text{RDD}(K_n) = n(n-1)^2, \text{RDD}(P_n) = H(P_n) + 4 \left(\sum_{i=1}^{n-1} \frac{1}{i} \right) - \frac{3}{n-1} \text{ and } \text{RDD}(C_n) = 4H(C_n). \]

As an application we present formulae for reciprocal degree distance of open and closed fences, \(P_n \Box K_2 \) and \(C_n \Box K_2 \), see Fig. 3.

By using Theorem 4.1, \(\text{RDD}(C_n) \) and \(H(C_n) \), we obtain the exact reciprocal degree distance of the following graphs.

Example 2.

(i) \(\text{RDD}(P_n \Box K_2) = 16 \left(\sum_{i=1}^{n} \frac{1}{i} \right) + 32 \left(\sum_{i=1}^{n-1} \frac{1}{i} \right) - 6n - \frac{24}{n-1} - 8. \)

(ii) \(\text{RDD}(C_n \Box K_2) = \begin{cases} 10n \left(1 + 4 \sum_{i=1}^{n} \frac{1}{i} \right) - 40 & \text{n is even} \\ 10n \left(1 + 4 \sum_{i=1}^{n} \frac{1}{i} \right) & \text{n is odd} \end{cases} \)

5. **Reciprocal degree distance of** \(G \circ G' \)

In this section, we obtain the reciprocal degree distance of the wreath product of graphs.
Theorem 5.1. Let G and G' be two connected graphs with n_1 and n_2 vertices, respectively. Then
\[RDD(G \circ G') = n_2^3 RDD(G) + 2H(G) \left(2 |E(G')| + M_1(G') + \overline{M}_1(G') \right) + n_2 |E(G)| \left(n_2^2 + 2 |E(G')| - n_2 \right) + \frac{n_1}{2} \left(2M_1(G') + \overline{M}_1(G') \right) . \]

Proof. Let $V(G) = \{ u_1, u_2, \ldots, u_{n_1} \}$ and let $V(G') = \{ v_1, v_2, \ldots, v_{n_2} \}$. Let x_{ij} denote the vertex (u_i, v_j) of $G \circ G'$. The degree of the vertex x_{ij} in $G \circ G'$ is $n_2 d_G(u_i) + d_G(v_j)$. By the definition of reciprocal degree distance
\[RDD(G \circ G') = \frac{1}{2} \sum_{x_{ij}, x_{k\ell} \in V(G \circ G')} \frac{d_{G \circ G'}(x_{ij}) + d_{G \circ G'}(x_{k\ell})}{d_{G \circ G'}(x_{ij}, x_{k\ell})} \]
\[= \frac{1}{2} \left(\sum_{i=0}^{n_1-1} \sum_{j=0}^{n_2-1} \frac{d_{G \circ G'}(x_{ij}) + d_{G \circ G'}(x_{i\ell})}{d_{G \circ G'}(x_{ij}, x_{i\ell})} + \sum_{i=0}^{n_1-1} \sum_{j=0}^{n_2-1} \frac{d_{G \circ G'}(x_{ij}) + d_{G \circ G'}(x_{k\ell})}{d_{G \circ G'}(x_{ij}, x_{k\ell})} \right) \]
\[= 2n_2 \sum_{i=0}^{n_1-1} \frac{d_G(u_i)}{d_G(v_j, v_k)} \left(\sum_{v_j, v_k \in E(G')} \frac{1}{d_G(v_j, v_k)} + \sum_{v_j, v_k \notin E(G')} \frac{1}{d_G(v_j, v_k)} \right) \]
\[+ \sum_{i=0}^{n_1-1} \left(\sum_{v_j, v_k \in E(G')} \frac{d_G(v_j) + d_G(v_j)}{d_G(v_j, v_k)} + \sum_{v_j, v_k \notin E(G')} \frac{d_G(v_j) + d_G(v_k)}{d_G(v_j, v_k)} \right) \]
\[= 2n_2 |E(G)| \left(\sum_{v_j \in V(G')} d_G(v_j) + \sum_{v_j \in V(G')} \frac{1}{2} (|E(G')| - d_G(v_j) - 1) \right) \]
\[+ \sum_{i=0}^{n_1-1} \left(\sum_{v_j, v_k \in E(G')} (d_G(v_j) + d_G(v_k)) + \sum_{v_j, v_k \notin E(G')} \frac{d_G(v_j) + d_G(v_k)}{2} \right) , \]

since each row
\[\text{induces a copy of } G' \text{ and } d_{G \circ G'}(x_{ij}, x_{i\ell}) = \begin{cases} 1, & \text{if } v_j v_k \in E(G') \\ 2, & \text{if } v_j v_k \notin E(G') . \end{cases} \]

(5.2)

\[= 2n_2 |E(G)| (n_2^2 + 2 |E(G')| - n_2) + n_1 (2M_1(G') + \overline{M}_1(G')) . \]
\(A_2 = \sum_{i, k = 0, j = 0}^{n_1-1} n_2-1 \sum_{i, k = 0, j = 0}^{n_2-1} \frac{d(x_{ij}) + d(x_{kj})}{d_G(x_{ij}, x_{kj})} \)

\[= \sum_{i, k = 0, j = 0}^{n_1-1} n_2-1 \sum_{i, k = 0, j = 0}^{n_2-1} \frac{n_2(d(u_i) + d(u_k)) + 2d(v_j)}{d_G(u_i, u_k)}, \]

since the distance between a pair of vertices in a column is same as the distance between the corresponding vertices of other column

\[= \sum_{i, k = 0, j = 0}^{n_1-1} n_2-1 \sum_{i, k = 0, j = 0}^{n_2-1} \frac{n_2(d(u_i) + d(u_k))}{d_G(u_i, u_k)} + \sum_{i, k = 0, j = 0}^{n_1-1} n_2-1 \sum_{i, k = 0, j = 0}^{n_2-1} 2d(v_j) \]

\[= 2n^2_2 RDD(G) + 8 |E(G')| H(G). \]

\(A_3 = \sum_{i, k = 0, j = 0}^{n_1-1} n_2-1 \sum_{i, k = 0, j = 0}^{n_2-1} \frac{d(x_{ij}) + d(x_{kj})}{d_G(x_{ij}, x_{kj})} \)

\[= \sum_{i, k = 0, j = 0}^{n_1-1} n_2-1 \sum_{i, k = 0, j = 0}^{n_2-1} \frac{n_2d(u_i) + d(v_j) + n_2d(u_k) + d(v_k)}{d_G(u_i, u_k)}, \]

since \(d_G(x_{ij}, x_{kj}) = d_G(u_i, u_k) \) for all \(j \) and \(k \) and further the distance between the corresponding vertices of the layers is counted in \(A_2 \)

\[= \sum_{i, k = 0, j = 0}^{n_1-1} n_2-1 \sum_{i, k = 0, j = 0}^{n_2-1} \frac{n_2d(u_i) + d(u_k)}{d_G(u_i, u_k)} + \sum_{i, k = 0, j = 0}^{n_1-1} n_2-1 \sum_{i, k = 0, j = 0}^{n_2-1} \frac{d(v_j) + d(v_k)}{d_G(u_i, u_k)}, \]

\[= 2n^2_2(n_2 - 1) RDD(G) + 4 H(G)(M_1(G') + \overline{M}_1(G')). \]

Using (5.2), (5.3) and (5.4) in (5.2), we have,

\[RDD(G \circ G') = n^2_2 RDD(G) + 2H(G) \left(2|E(G')| + M_1(G') + \overline{M}_1(G') \right) \]

\[+ n_2 |E(G)| \left(n^2_2 + 2|E(G')| - n_2 \right) + \frac{n_1}{2} \left(2M_1(G') + \overline{M}_1(G') \right). \]

\[\square \]

Acknowledgments

The author would like to thank reviewer for careful reading and suggestions, which improved the manuscript.

References

K. Pattabiraman
Department of Mathematics, Faculty of Engineering and Technology, Annamalai University, Annamalainagar-608 002, India
Email: pramank@gmail.com

M. Vijayaragavan
Department of Mathematics, Thiruvalluvar College of Engineering and Technology, Vandavasi 604 505, India
Email: mvragavan09@gmail.com