NONINNER AUTOMORPHISMS OF FINITE p-GROUPS LEAVING THE CENTER ELEMENTWISE FIXED

A. ABDOLLAHI* AND S. M. GHORAISHI

Communicated by Ali Reza Jamali

Abstract. A longstanding conjecture asserts that every finite nonabelian p-group admits a noninner automorphism of order p. Let G be a finite nonabelian p-group. It is known that if G is regular or of nilpotency class 2 or the commutator subgroup of G is cyclic, or $G/Z(G)$ is powerful, then G has a noninner automorphism of order p leaving either the center $Z(G)$ or the Frattini subgroup $\Phi(G)$ of G elementwise fixed. In this note, we prove that the latter noninner automorphism can be chosen so that it leaves $Z(G)$ elementwise fixed.

1. Introduction

One of the most widely known, although nontrivial, properties of finite p-groups of order greater than p is that they always have a noninner automorphism α of p-power order. This fact was first proved by Gaschütz in 1966 [5]. Schmid [8] extended Gaschütz’s result by showing that if G is a finite nonabelian p-group, then the automorphism α can be chosen to act trivially on the center. A longstanding conjecture that had been raised even before Gaschütz’s result is the following

Conjecture 1. Every finite nonabelian p-group admits a noninner automorphism of order p.

Indeed, in 1964 Liebeck [7] proved that if p is an odd prime and G is a finite p-group of class 2 then G has a noninner automorphism of order p acting trivially on the Frattini subgroup $\Phi(G)$. The corresponding result for 2-groups is false in general, as Liebeck himself produced an example of a 2-group G of class 2 with the property that all automorphisms of order two leaving $\Phi(G)$ elementwise
fixed are inner. By a cohomological result of Schmid [9], it follows that finite regular nonabelian \(p \)-groups admit a noninner automorphism leaving the Frattini subgroup elementwise fixed. Deaconescu and Silberberg [4] proved that if \(C_G(Z(\Phi(G))) \neq \Phi(G) \), then the noninner automorphism can be chosen to act trivially on \(\Phi(G) \). Hence the main result of [4] reduced the verification of Conjecture 1 to finite nonabelian \(p \)-groups satisfying the condition \(C_G(Z(\Phi(G))) = \Phi(G) \). In [1, 2, 3] it is proved that if \(G \) is a finite nonabelian \(p \)-group of class at most 3 or \(G/Z(G) \) is powerful, then \(G \) has a noninner automorphism of order \(p \) leaving either \(\Phi(G) \) or \(\Omega_1(Z(G)) \) elementwise fixed. Jamali and Viseh [6] proved that every nonabelian finite 2-group with cyclic commutator subgroup has a noninner automorphism of order two leaving either \(\Phi(G) \) or \(Z(G) \) elementwise fixed. They have also observed that the results of [1, 2] can be improved, that is, if \(G \) is of nilpotency class 2 or \(G/Z(G) \) is powerful, then \(G \) has a noninner automorphism of order \(p \) leaving either the center \(Z(G) \) or Frattini subgroup elementwise fixed. Therefore the following result holds.

Proposition 1.1. Let \(G \) be a finite nonabelian \(p \)-group satisfying one of the following conditions:

1. \(G \) is regular;
2. \(G \) is nilpotent of class 2;
3. the commutator subgroup of \(G \) is cyclic;
4. \(G/Z(G) \) is powerful.

Then \(G \) has a noninner automorphism of order \(p \) leaving either \(Z(G) \) or \(\Phi(G) \) elementwise fixed.

The main result of our paper is the following.

Theorem 1.2. Let \(G \) be a finite nonabelian \(p \)-group satisfying one of the following conditions:

1. \(G \) is regular;
2. \(G \) is nilpotent of class 2;
3. the commutator subgroup of \(G \) is cyclic;
4. \(G/Z(G) \) is powerful.

Then \(G \) has a noninner automorphism of order \(p \) leaving \(Z(G) \) elementwise fixed.

2. **Proof of the main result**

We need the following result which may be well-known. We prove it for the reader’s convenience.

Lemma 2.1. Let \(G \) be any finite \(p \)-group. Then \(G = AH \) for some subgroups \(A \) and \(H \) such that \(A \leq Z(G) \) and \(Z(H) \leq \Phi(H) \).

Proof. We prove Lemma by induction on \(|G|\). If \(G \) is abelian then the assertion is clear, take \(A = G \) and \(H = 1 \). Now let \(G \) be a finite nonabelian \(p \)-group and assume that the assertion holds for all \(p \)-groups of order less than \(|G|\). Moreover we may assume that \(Z(G) \leq \Phi(G) \), otherwise one may take \(A = 1 \) and \(H = G \) to complete the proof. Thus there exist some element \(a \in Z(G) \) and a maximal subgroup \(M \) of \(G \) such that \(a \notin M \). By induction hypothesis \(M = BH \) for some subgroups \(B \) and \(H \) of \(M \) such that \(B \leq Z(M) \) and \(Z(H) \leq \Phi(H) \). Let \(A = \langle a, B \rangle \). Therefore \(A \leq Z(G) \) and \(G = AH \). This completes the proof. \(\Box \)
Remark 2.2 ([4, Remark 4.]). Let G be a central product of subgroups A and B; i.e., $G = AB$ and $[A, B] = 1$. Suppose that $\alpha \in \text{Aut}(A)$ and $\beta \in \text{Aut}(B)$ agree on $A \cap B$. Then α and β admit a common extension $\gamma \in \text{Aut}(G)$. In particular, if A has a noninner automorphism of order p which fixes $Z(A)$ elementwise, then G has a noninner automorphism of order p leaving both $Z(A)$ and B elementwise fixed.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let G be a finite nonabelian p-group. By Lemma 2.1, we have $G = AH$ for some subgroups A and H of G such that $A \leq Z(G)$ and $Z(H) \leq \Phi(H)$. If G is regular, or of nilpotency class 2, or with cyclic commutator subgroup, then so is H. Now, suppose that $G/Z(G)$ is powerful. If $p > 2$, then $H'Z(G)/Z(G) \leq G'/Z(G)/Z(G) \leq G^pZ(G)/Z(G)$. Thus $H' \leq G^pZ(G) = H^pZ(G)$, since $G^p = AH^p$. Now if $c \in H'$, then $c = ba$ for some $b \in H^p$ and $a \in Z(G)$. But $b^{-1}c = a \in Z(H)$. Therefore $H' \leq H^pZ(H)$ and this means that $H/Z(H)$ is powerful. A similar argument shows that $H/Z(H)$ is powerful for $p = 2$. Then, by Proposition 1.1, H has a noninner automorphism of order p fixing $Z(H)$ elementwise. Now it follows from Remark 2.2 that G has a noninner automorphism of order p leaving $AZ(H) = Z(G)$ elementwise fixed. This completes the proof. □

We finish the paper with the following conjecture.

Conjecture 2. Every finite nonabelian p-group admits a noninner automorphism of order p leaving the center elementwise fixed.

Acknowledgments

The authors are grateful to the referee for his/her invaluable comments. The first author was financially supported by the Center of Excellence for Mathematics, University of Isfahan. This research was in part supported by a grant IPM (No. 91050219).

References

Alireza Abdollahi
Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran
and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran
Email: a.abdollahi@math.ui.ac.ir

S. Mohsen Ghoraiishi
Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran
and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran
Email: ghoraiishi@gmail.com