تعداد نشریات | 45 |

تعداد شمارهها | 1,107 |

تعداد مقالات | 9,130 |

تعداد مشاهده مقاله | 8,775,700 |

تعداد دریافت فایل اصل مقاله | 6,437,182 |

## مدل سازی اعوجاج انتها به انتها و بهینه سازی منطبق با کانال برای طرح کدگذاری چند توصیفه MLMDC | ||

هوش محاسباتی در مهندسی برق | ||

مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 13 آذر 1398 اصل مقاله (972.53 K) | ||

شناسه دیجیتال (DOI): 10.22108/isee.2019.118706.1266 | ||

نویسنده | ||

محمد کاظمی ^{}
| ||

^{}گروه مهندسی برق- دانشکده فنی و مهندسی- دانشگاه اصفهان- اصفهان- ایران | ||

چکیده | ||

-- | ||

کلیدواژهها | ||

- | ||

اصل مقاله | ||

Introduction Mixed Layer MDC (MLMDC) At the side decoder, the mentioned separation is not possible, since one description is not available. Here, the base coefficients are estimated from the combined coefficients, as given by where Z_0 and N_0 are functions of λ , Q and c; their functionality and the derivation details can be found in [19]. Consequently the side distortion is computed by MLMDC with the above structure is an MDC scheme shows promising performance especially at high Packet Loss Rates (PLRs). End-to-end Distortion Model for MLMDC where D_c^n and D_Q^n are channel and quantization distortions, respectively; Δ_X^i is the mismatch distortion and is defined as: in which δ_X^i is the mismatch between the transmitted signal and received signal for the ith frame; and δ_Q^n is the difference signal caused by quantization at the encoder. For the channel distortion we can write that: where β^j is the intra rates of the jth frame. Equation (6) says that in order to find the channel distortion at each frame, one must calculate the mismatch distortion associated with that frame as well as the mismatch distortion of all previously coded frames. in which the mismatch distortion associated with the nth frame, Δ_(X_(2L-est))^n, which is due to the current frame data loss and not due to the error propagation, has been separated. Correspondingly, (4) becomes: E[(δ_(X_(2L-est) )^n )^2 ]+E[(δ_(Q )^n )^2 ]=2P_01 E[(δ_01^i )^2 ]+E[(δ_(Q )^n )^2 ]=2P_01 E[(X ̂_0^n-X ̂_1^n )^2 ]+E[(X^n-X ̂_0^n )^2 ] (10) 2P_01 E[(X ̂_0^n-X ̂_1^n )^2 ]+E[(X^n-X ̂_0^n )^2 ]=(2P_01 )(E[(X ̂_0^n-X ̂_1^n )^2 ]+E[(X^n-X ̂_0^n )^2 ])+(1-2P_01 )E[(X^n-X ̂_0^n )^2 ] (11) With the assumption of independency between channel and quantization distortions [10], (10) becomes: E[(δ_(X_(2L-est) )^n )^2 ]+E[(δ_(Q )^n )^2 ]=2P_01 E[(X^n-X ̂_1^n )^2 ]+(1-2P_01 )E[(X^n-X ̂_0^n )^2 ]=2P_01 D_side^n+(1-2P_01 ) D_cen^n (12) where D_side^n and D_cen^n are given by (3) and (1), respectively. Using (12), the distortion of (9) becomes: In equation above only E[(δ_(X_(1L-est) )^i )^2 ] is unknown which can be computed as follows: Objective Function It shows that the solution of equation (18), {C_λ^* ,QP_λ^*}, is the solution of the constrained problem of (16) but with the constraint ∑_(n=0)^(N-1)▒(R_1^n+R_2^n ) <R(λ), as shown in [22]. In other words, if λ^* is found such that R(λ^* )= R_t, the solutions of (18) and the solutions of (16) are identical. The distribution parameter of DCT coefficients of the GOP under optimization is calculated. Experimental Results The parameters are chosen such that the first frame of the GOP (I-frame) is duplicated in both descriptions and for the next P-frames, a constant MDC parameter is used.
Optimization and RD Curves
Conclusion | ||

مراجع | ||

[1] V. K. Goyal, “Multiple description coding: Compression meets the network,” [2] M. Kazemi, S. Shirmohammadi, K. H. Sadeghi, “A Review of Multiple Description Coding techniques for Error-Resilient Video Delivery”, [3] Y. Wang, A. Reibman, and S. Lin, “Multiple description coding for video delivery,” [4] N. Kamnoonwatana, D. Agrafiotis and N. Canagarajah, “Flexible Adaptive Multiple Description Coding for Video Transmission,” IEEE Trans. Circuits Syst. Video Technol, Vol. 22, pp. 1-11, 2012. [5] M.Kazemi, R. Iqbal and S. Shirmoammadi, “Joint Intra and Multiple Description Coding for Packet Loss Resilient Video Transmission,” [6] Jing Chen ; Jie Liao ; Huanqiang Zeng ; Canhui Cai, “Multiple description coding for multi-view video with adaptive redundancy allocation,” [7] C. Lin, T. Tillo, Y. Zhao, and B. Jeon, “Multiple Description Coding for H.264/AVC with Redundancy Allocation at Macro Block Level,” [8] Tammam Tillo, Marco Grangetto, and Gabriella Olmo “Redundant Slice Optimal Allocation for H.264 Multiple Description Coding,” IEEE Trans. Circuits Syst. Video Technol, Vol. 18, pp. 59-70, 2008. [9] K. Stuhlmuller, N. Farber, M. Link, and B. Girod, “Analysis of video transmission over lossy channels,” [10] Z. He, J. Cai, and C. W. Chen, “Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding,” [11] Y. Wang, Z. Wu, and J. M. Boyce, “Modeling of transmission-loss induced distortion in decoded video,” [12] M. Kazemi, K. H. Sadeghi, S. Shirmohammadi, and P. Moallem, “Rate/distortion optimization in multiple description video coding,” [13] Y. Xu and C. Zhu, “End-to-End Rate-Distortion Optimized Description Generation for H.264 Multiple Description Video Coding,” IEEE Trans. Circuits Syst. Video Technol, Vol. 23, issue 9, pp. 1523 –1536, 2013 [14] M. Kazemi, R. Iqbal, S. Shirmohammadi, “Redundancy allocation basedon weighted mismatch-rate slope for multiple description video coding,” IEEE Trans. Multimedia, Vol. 19, No. 1, pp. 54-66, 2017. [15] A. Reibman, H. Jafarkhani, Y. Wang, M. Orchard, and R. Puri, "Multiple-description video coding using motion-compensated temporal prediction", [16] P. Correia, P. A. Assuncao [17] M. Ma [18] M. Kazemi, K. Sadeghi, and S. Shirmohammadi, “A high video quality Multiple Description Coding scheme for lossy channels,” [19] M. Kazemi, K. H. Sadeghi, and S. Shirmohammadi, “A Mixed Layer Multiple Description Video Coding Scheme,” [20] Y. Wang, M. T. Orchard, V. Vaishampayan [21] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard,” [22] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set of quantizers,” [23] X. Li, N. Oertel, A. Hutter, and A. Kaup, “Laplace distribution based Lagrangian rate distortion optimization for hybrid video coding,” [24] F. Bossen, B. Bross, K. Sühring, and D. Flynn, “HEVC complexity and implementation analysis,” [25] B. Oztas, M.T. Pourazad, P. Nasiopoulos, and V.C.M. Leung, “A study on the HEVC performance over lossy networks,” 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 785–788, 2012. [26] Y. Altunbasak and N. Kamaci, “An analysis of the DCT coefficient distribution with the H.264 video coder,” [27] Sh. Ghahremani, M. Ghanbari, “Error resilient video transmission in ad hoc networks using layered and multiple description coding,” Springer Multimed. Tools App., Vol. 76, No. 6, pp. 9033-9049, 2017. [28] M. Majid, Muhammad Owais, S. M. Anwar, “Visual saliency based redundancy allocation in HEVC compatible multiple description video coding,” [29] M. Kazemi, R. Iqbal, S. Shirmohammadi, “Redundancy allocation based on weighted mismatch-rate slope for multiple description video coding,” | ||

آمار تعداد مشاهده مقاله: 15 تعداد دریافت فایل اصل مقاله: 8 |