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Abstract. In the space of marked group, we determine the structure of groups which are limit points

of the set of all generalized quaternion groups.

In the space of marked groups, consider the situation, a sequence of generalized quaternion groups

in which converges to a marked group (G,S). We will prove that there exists a finitely generated

abelian group A = Zl ⊕ Z2k , such that

G ∼=
Z4 ⋉A

⟨(2, 2k−1)⟩
.

Here, the cyclic group Z4 acts on A by x.a = (−1)xa. This gives a partial answer to a question of

Champetier and Guirardel on the limits of finite groups, [1]. Already, Guyot in [4] studied the same

problem for the class of dihedral groups. As any dihedral group is a semidirect product of two cyclic

groups, determining their limit points is more straightforward than the case of generalized quaternion

groups. The generalized quaternion group Q2n has the standard presentation

⟨x, y|x2n−1
= y4 = 1, yxy−1 = x−1, x2

n−2
= y2⟩,

and in the same time it can be defined as the quotient

Q2n =
Z4 ⋉ Z2n−1

⟨(2, 2n−2)⟩
,

MSC(2010): Primary: 20A15.

Keywords: the space of marked groups, Gromov-Grigorchuk metric, generalized quaternion groups, universal theory, ultra-product.

Received: 19 August 2018, Accepted: 18 September 2018.

∗Corresponding author.

http://dx.doi.org/10.22108/ijgt.2018.112591.1499

.

1

http://www.theoryofgroups.ir
http://www.ui.ac.ir
http://dx.doi.org/10.22108/ijgt.2018.112591.1499


2 Int. J. Group Theory x no. x (201x) xx-xx R. Hobbi and M. Shahryari

where the action of Z4 on Z2n−1 is given by x · a = (−1)xa. In this article, the word quaternion will

be used instead of generalized quaternion. Four facts about quaternion groups will be used in our

arguments:

1- they are 2-groups;

2- they have unique involution;

3- any subgroup of a quaternion group is cyclic or quaternion;

4- the order two subgroup ⟨(2, 2n−2)⟩ is central in Z4 ⋉ Z2n−1 .

1. Basic notions

The idea of Gromov-Grigorchuk metric on the space of finitely generated groups is proposed by M.

Gromov in his celebrated solution to the Milnor’s conjecture on the groups with polynomial growth

(see [3]). It is extensively studied by Grigorchuk in [2]. For a detailed discussion of this metric, the

reader can consult [1]. Here, we give some necessary basic definitions. A marked group (G,S) consists

of a group G and an m-tuple of its elements S = (s1, . . . , sm) such that G is generated by S. Two

marked groups (G,S) and (G′, S′) are the same, if there exists an isomorphism G → G′ sending any

si to s′i. The set of all such marked groups is denoted by Gm. This set can be identified by the set of

all normal subgroup of the free group Fm. Since the later is a closed subset of the compact topological

space 2Fm (with the product topology), so it is also a compact space. It is easy to see that, if (Ni) is

a convergent sequence in this space, then

limNi = lim inf
i

Ni = lim sup
i

Ni,

where by definition

lim inf
i

Ni =
∞∪
j=1

∩
i≥j

Ni, lim sup
i

Ni =
∞∩
j=1

∪
i≥j

Ni.

This space is in fact metrizable: let Bλ be the closed ball of radius λ in Fm (having the identity as

the center) with respect to its word metric. For any two normal subgroups N and N ′, we say that

they are in distance at most e−λ, if Bλ ∩N = Bλ ∩N ′. So, if Λ is the largest of such numbers, then

we can define

d(N,N ′) = e−Λ.

This induces a corresponding metric on Gm. To see what is this metric exactly, let (G,S) be a marked

group. For any non-negative integer λ, consider the set of relations of G with length at most λ, i.e.

Relλ(G,S) = {w ∈ Fm : ∥w∥ ≤ λ,w(S) = 1}.

Then d((G,S), (G′, S′)) = e−Λ, where Λ is the largest number such that RelΛ(G,S) = RelΛ(G
′, S′).

This metric on Gm is the so called Gromov-Grigorchuk metric. Equivalently, two marked groups

(G,S) and (G′, S′) are close, if large enough balls (around identity) in the corresponding marked

Cayley graphs of (G,S) and (G′, S′) are isomorphic.
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Many topological properties of the space Gm are discussed in [1]. In this article, we will need some

basic results from [1]. The first result, describes the limits of convergent marked quotient groups.

Theorem 1.1. Suppose lim(Gi, Si) = (G,S) and for any i, assume that Ki is a normal subgroup of

Gi. Assume that Si is the canonical image of Si in Gi/Ki. If we have lim(Gi/Ki, Si) = (H,T ), then

H = G/K for some normal subgroup K and T is the canonical image of S in G/K.

In our main argument, we will give an explicit description of this normal subgroup K in terms of

the normal subgroups Ki. The second result, concerns the notion of fully residualness. Let X be a

class of groups. We say that a group G is fully residually X, if for any finite subset E ⊆ G, there exists

a group H ∈ X and a homomorphism α : G → H such that the restriction of α to E is injective.

Theorem 1.2. Any finitely generated residually X-group is a limit of a sequence of marked groups

from X. Conversely, any finitely presented limit of such marked groups is fully residually X.

To explain the next result from [1], we need some logical concepts. Let L = (1,−1 , ) be the first

order language of groups. For a group G, we denote by Th(G), the first order theory of G, i.e. the set

of all first order sentences in the language L which are true in G. The universal theory of G is denoted

by Th∀(G) and consists of all elements of Th(G) which have just universal quantifiers in their normal

form.

Theorem 1.3. Suppose a sequence (Gi, Si) of marked groups converges to (G,S). Then we have

lim supiTh∀(Gi) ⊆ Th∀(G). Conversely, if
∩

iTh∀(Gi) ⊆ Th∀(G), then for any marking (G,S), there

exits a sequence of integers (ni) and subgroups Hi ≤ Gni such that a sequence of suitable markings of

His converges to (G,S).

There is also a logical connection between convergence in the space of marked groups and ultra-

products. Let (Gi) be a sequence of groups and U be an ultra-filter on N. Define a congruence over∏
iGi by

(xi) ∼ (yi) ⇔ {i : xi = yi} ∈ U .

The quotient group
∏

iGi/ ∼ is called the ultra-product of the groups Gi with respect to U . We

denote this new group by
∏

iGi/U . A special case of the well-known theorem of Lǒs says that

Th∀(
∏
i

Gi/U) = lim
U

Th∀(Gi),

where, limU of any sequence of sets (Ai) is the set of all elements which belong to U-almost all number

of Ais.

Theorem 1.4. Let lim(Gi, Si) = (G,S). Then G can be embedded in an ultra-product
∏

iGi/U , for
some ultra-filter U . Conversely, let G be any finitely generated subgroup of some ultra-product

∏
iGi/U .

Then for any marking (G,S), there exits a sequence of integers (ni) and subgroups Hi ≤ Gni such that

a sequence of suitable markings of His converges to (G,S).
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2. Main result

We work within the space of marked groups Gm. In [4], Guyot determined the structure of limits

of dihedral groups. The main result of [4] is the following.

Theorem 2.1. Let G be a non-abelian finitely generated group. Then the following conditions are

equivalent:

1- G is a limit of dihedral groups.

2- G is fully residually dihedral.

3- G is isomorphic to a semidirect product Z2 ⋉ A, where A is a finitely generated abelian group

with a cyclic torsion part, such that Z2 acts by multiplication by −1.

4-
∩

n≥3Th∀(D2n) ⊆ Th∀(G).

5- G can be embedded in some ultra-product of dihedral groups.

Our aim is to give the same characterization for the case of quaternion groups. Recall that by a

quaternion group, we mean in fact a generalized quaternion group.

Theorem 2.2. Let G be a non-abelain finitely generated group. Then the following conditions are

equivalent:

1- G is a limit of quaternion groups.

2- G is fully residually quaternion.

3- G is isomorphic to a group of the form

Z4 ⋉ (Zl ⊕ Z2k)

⟨(2, 2k−1)⟩
,

for some integers l and k, such that the action of Z4 on Zl ⊕ Z2k is given by x · a = (−1)xa.

4-
∩

n≥3Th∀(Q2n) ⊆ Th∀(G).

5- G can be embedded in some ultra-product of quaternion groups.

Proof. Our pattern for the proof is the following:

1 ⇒ 5 ⇒ 4 ⇒ 1, 1 ⇔ 3, 1 ⇔ 2

(1 ⇒ 5). Let G be a limit of quaternion groups. Then by Theorem 1.4, there exists an ultra-filter

U such that G embeds in
∏

n≥3Q2n/U .

(5 ⇒ 4). Suppose for some ultra-filter U , we have G ≤
∏

n≥3Q2n/U . Then,

Th∀(
∏
n≥3

Q2n/U) ⊆ Th∀(G).
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By the theorem of Lǒs, we have

Th∀(
∏
n≥3

Q2n/U) = lim
U
(Th∀(Q2n))

⊇
∩
n≥3

Th∀(Q2n),

and so 4 follows.

(4 ⇒ 1). By Theorem 1.3, there exists a sequence (ni) of integers and subgroups Hi ≤ Q2ni such

that for suitable markings, we have lim(Hi, Ti) = (G,S). Every Hi is cyclic or quaternion. If almost

all Hi are cyclic then G is abelian, which is not the case. Because of convergence, almost all Hi are

quaternion and 1 follows.

(1 ⇒ 3). Suppose that G is a limit of quaternion groups. Then for suitable markings, we have

lim(Q2i , Ti) = (G,T ).

Recall that Q2i = (Z4 ⋉ Z2i−1)/Ki, where Ki = ⟨(2, 2i−2)⟩. Let

Ti = (ai1K, . . . , aimK), ti = (2, 2i−2).

Then Si = (ai1, . . . , aim, ti) is a generating set for Z4 ⋉ Z2i−1 . We have (Z4 ⋉ Z2i−1 , Si) ∈ Gm+1

and since Gm+1 is compact, so a subsequence of this later sequence is convergent, i.e. there exists a

sequence (ni) and a marked group (H,S) ∈ Gm+1, such that

lim(Z4 ⋉ Z2ni−1 , Sni) = (H,S).

On the other hand, in Gm+1, we have lim(Q2ni , Tni +1) = (G,T +1), where T +1 denotes T extended

by one extra 1 from right (and similarly Tni + 1). By Theorem 1.1, we see that G = H/K, for

some normal subgroup K. Before computing H, we show that K ⊆ Z(H). For simplicity, we put

Hi = Z4 ⋉ Z2ni−1 and Si = Sni . Suppose that

Ni = {w ∈ Fm+1 : w(Si) = 1}, N = {w ∈ Fm+1 : w(S) = 1}.

Then we have

1- Hi
∼= Fm+1/Ni and H ∼= Fm+1/N .

2- N = lim infiNi.

Similarly, we know that the marked group (Hi/Ki, Ti + 1) is corresponding to a normal subgroup

Mi in Fm+1. We have

Mi = {w ∈ Fm+1 : w(Ti + 1) = 1}

= {w ∈ Fm+1 : w(Si) ∈ Ki}.

By a similar argument, (H/K, T + 1) corresponds to

M = {w ∈ Fm+1 : w(S) ∈ K}.
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Therefore, we have

{w ∈ Fm+1 : w(S) ∈ K} = lim inf
i

{w ∈ Fm+1 : w(Si) ∈ Ki}.

Note that this description of K is generally true for all cases of Theorem 1.1. Recall that Ki ⊆ Z(Hi).

We now can show that K ⊆ Z(H). Let a ∈ K and b ∈ H. There are words w and v such that

a = w(S) and b = v(S). Moreover w ∈ M . So, there is a j0 such that for all i ≥ j0, w(Si) ∈ Ki. So,

for i ≥ j0, we have [w(Si),Hi] = 1. As a special case [w(Si), v(Si)] = 1. Let R be the length of the

commutator word [w, v]. Since (Hi, Si) → (H,S), so there is j1, such that for all i ≥ j1, two closed

balls BR(Hi, Si) and BR(H,S) are marked isomorphic. Let j = max{j0, j1}. Then for i ≥ j,

BR(Hi, Si) ∼= BR(H,S), [w(Si), v(Si)] = 1.

Hence, we have also [w(S), v(S)] = 1 and this shows that a ∈ Z(H).

It remains to determine the structure of H. But this is completely similar to the process of finding

limits of dihedral groups in [4]. Hence, we know that H = Z4 ⋉ A, where A is a finitely generated

abelian group with a cyclic torsion part. As∩
n≥2

Th∀(Z4 ⋉ Z2n) ⊆ Th∀(Z4 ⋉A),

we see that for all odd prime p, the universal sentence

∀x(xp = 1 → x = 1)

which is true in all groups Z4⋉Z2n , is already true in Z4⋉A. This shows that in the later group, the

torsion part is a cyclic 2-group. Hence for some integers l and k, we have A = Zl ⊕ Z2k . By a simple

computation in semidirect product, we see that

Z(H) = {(0, 0), (2, 0), (0, 2k−1), (2, 2k−1)}.

Therefore we have five alternatives for K:

K = {(0, 0)},

K = {(0, 0), (2, 0)},

K = {(0, 0), (0, 2k−1)},

K = {(0, 0), (2, 2k−1)},

K = Z(H).

We will prove that the only acceptable case is K = {(0, 0), (2, 2k−1)}. Recall that all quaternion groups

have a unique involution. This fact can be translated into a universal sentence as

∀x, y(x2 = y2 = 1 → (x = 1 ∨ y = 1 ∨ x = y)).
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Since G is a limit of quaternion groups, so the above sentence is also true in G, i.e. G has a unique

involution. Computation in semidirect product, reveals the following facts:

i- in the case one, there are at least three involutions

(2, 0)K, (0, 2k−1)K, (2, 2k−1)K.

ii- in the second case, there are at least two involutions

(1, 0)K, (0, 2k−1)K.

iii- in the third case, there is also at least two involutions

(2, 0)K, (0, 2k−2)K.

iv- in the case five, there are at least two involutions

(1, 0)K, (0, 2k−2)K.

It remains only the case four where actually the resulting group has a unique involution. Summa-

rizing, we conclude that G is isomorphic to a group of the form

Z4 ⋉ (Zl ⊕ Z2k)

⟨(2, 2k−1)⟩
,

for some integers l and k, such that the action of Z4 on Zl ⊕ Z2k is given by x · a = (−1)xa.

(3 ⇒ 1). We know that the abelian group Zl ⊕ Z2k is a limit of cyclic 2-groups, and hence

Z4 ⋉ (Zl ⊕ Z2k) is a limit of groups of the form Z4 ⋉ Z2n−1 . By Theorem 1.1, we have

Z4 ⋉ Z2n−1

Kn
→ Z4 ⋉ (Zl ⊕ Z2k)

L
,

for some normal subgroup L. Again checking the number of involutions, we conclude that L = K.

(2 ⇒ 1). Let G be fully residually quaternion. Suppose S is an arbitrary generating set for G.

For any R > 0, the closed ball BR(G,S) is finite. Hence, there is a n ≥ 3 and a homomorphism

α : G → Q2n , such that its restriction to BR(G,S) is injective. Let T = α(S). Then clearly we have

d((G,S), (Q2n , T )) ≤ e−R.

This shows that G is a limit of quaternion groups.

(1 ⇒ 2). By 3, the group G is finitely presented and hence by Theorem 1.2, it is fully residually

quaternion. □

As a final note, it must be said that the same argument gives us the limits of dicyclic groups:

let r ≥ 2 be a natural number and consider the cyclic group Z4r. The group Z4 acts on Z4r by

x.a = (−1)xa. It is easy to see that the subgroup ⟨(2, r)⟩ has order 2 and contained in the center of

Z4 ⋉ Z4r. The group

Dic(r) =
Z4 ⋉ Z4r

⟨(2, r)⟩
http://dx.doi.org/10.22108/ijgt.2018.112591.1499
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is called the dicyclic group of order 4r. It has a presentation of the form

Dic(r) = ⟨x, y | x2r = 1, y2 = xr, yxy−1 = x−1⟩.

By a similar argument as in the case of quaternion groups one can prove the following theorem.

Theorem 2.3. Let G be a non-abelian finitely generated group. Then the following conditions are

equivalent:

1- G is a limit of dicyclic groups.

2- G is fully residually dicyclic.

3- G is isomorphic to a group of the form

Z4 ⋉ (Zl ⊕ Z2k)

⟨(2, k)⟩
,

for some integers l and k, such that the action of Z4 on Zl ⊕ Z2k is given by x · a = (−1)xa.

4-
∩

r≥2Th∀(Dic(r)) ⊆ Th∀(G).

5- G can be embedded in some ultra-product of dicyclic groups.
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