RECOGNITION OF THE SIMPLE GROUPS $\text{PSL}_2(q)$ BY CHARACTER DEGREE GRAPH AND ORDER

Z. AKHLAGHI AND M. KHATAMI* AND B. KHOSRAVI

Communicated by Hiroyoshi Yamaki

Abstract. Let G be a finite group, and $\text{Irr}(G)$ be the set of complex irreducible characters of G. Let $\rho(G)$ be the set of prime divisors of character degrees of G. The character degree graph of G, which is denoted by $\Delta(G)$, is a simple graph with vertex set $\rho(G)$, and we join two vertices r and s by an edge if there exists a character degree of G divisible by rs. In this paper, we prove that if G is a finite group such that $\Delta(G) = \Delta(\text{PSL}_2(q))$ and $|G| = |\text{PSL}_2(q)|$, then $G \cong \text{PSL}_2(q)$.

1. Introduction

Let G be a finite group, and $\text{Irr}(G)$ be the set of complex irreducible characters of G. The set of character degrees of G is denoted by $\text{cd}(G)$, and the set of prime divisors of elements of $\text{cd}(G)$ is denoted by $\rho(G)$. It is well-known that some information about the structure of the group G can be obtained from $\text{cd}(G)$. A useful way to study the set of character degrees of a group G, is attaching graphs to $\text{cd}(G)$. One of these graphs that has been studied by different authors, is the character degree graph that was first defined in [9]. The character degree graph of the group G, which is denoted by $\Delta(G)$, is a graph with vertex set $\rho(G)$, and two distinct vertices p and q are adjacent if and only if there exists $\chi \in \text{Irr}(G)$ such that pq divides $\chi(1)$.

In [4], it has been proved that the simple group $\text{PSL}_2(p)$ where p is a prime, is uniquely determined by its order and its largest and second largest irreducible character degrees. As a consequence of this result, the simple group $\text{PSL}_2(p)$ is uniquely determined by its character degree graph and its order. Then, in [5] the recognizability of the simple groups of order less that 6000, by order and character degree graphs has been proved. Also in [6], the authors showed that the simple groups $\text{PSL}_2(p^2)$ for

Keywords: character degree graph, simple group, characterization.
Received: 30 March 2017, Accepted: 15 November 2017.
*Corresponding author.
odd prime p, are uniquely determined by their order and their character degree graphs. In this paper, we continue this investigation for finite simple groups $\text{PSL}_2(q)$, where q is a prime power:

Main Theorem. Let G be a group such that $\Delta(G) = \Delta(\text{PSL}_2(q))$ and $|G| = |\text{PSL}_2(q)|$, where $q \geq 4$ is a prime power. Then $G \cong \text{PSL}_2(q)$.

All characters in this paper are complex characters and all graphs are finite and simple. For an integer n, we write $\pi(n)$ for the set of all prime divisors of n. We denote by $\pi(G)$, the set of all prime divisors of $|G|$. For every integer n and every set of primes π, the π-part of n is denoted by n_{π}. If N is a normal subgroup of G, then the inertia group of $\theta \in \text{Irr}(N)$ in G is denoted by $I_G(\theta)$ and $\text{Irr}(G|\theta)$ is the set of all irreducible constituent characters of θ^G and by $\text{cd}(G|\theta)$ we mean, the set of degrees of characters in $\text{Irr}(G|\theta)$.

2. Preliminary Results

Lemma 2.1. ([10, Theorem 2.7]) Let p and q be two different primes and put $\pi = \{p, q\}$. Let S be a finite simple non-abelian group and assume that $S \subseteq G \leq \text{Aut}(S)$, where $|G/S| = p$, p does not divide $|S|$ and q divides $|S|$. Assume that pq does not divide $\chi(1)$ for every $\chi \in \text{Irr}(G)$. Then S is a finite simple group of Lie type in characteristic q, and G does not have any abelian subgroup H with $|H_\pi| = |G_\pi|$.

Lemma 2.2. Assume N is a normal subgroup of a finite group G and assume that $G/N \cong K/N \times H/N$ such that all of the Sylow subgroups of H/N are cyclic and $(|K/N||H/N|) = 1$. If $\theta \in \text{Irr}(N)$ is G-invariant, then either every element in $\text{cd}(G|\theta)$ is divisible by some $x \in \pi(K/N)$; or $\lambda(1)\theta(1) \in \text{cd}(G|\theta)$, for every $\lambda \in \text{Irr}(G/N)$.

Proof. First suppose that θ does not extend to K, therefore for every $\chi \in \text{Irr}(K|\theta)$ we have $\chi_N = e\theta$, where $e \neq 1$ is a divisor of $|K : N|$. Hence for every element $a \in \text{cd}(K|\theta)$ there exists a prime $x \in \pi(K/N)$ that divides a. So we may assume θ extends to K. Since $(|K/N||H/N|) = 1$ and all of Sylow subgroups of H/N are cyclic, then by [2, p. 295, Theorem 22.3] for every Sylow subgroup P/N of G/N, θ extends to P. Then by [3, Corollary 11.31] θ extends to G. Therefore by Gallagher’s theorem [3, Corollary 6.17], $\lambda(1)\theta(1) \in \text{cd}(G|\theta)$, for every $\lambda \in \text{Irr}(G/N)$.

Lemma 2.3. (Zsigmondy Theorem [15]) Let p be a prime and let n be a positive integer. Then one of the following holds:

(i) there is a primitive prime p' for $p^n - 1$, that is, $p' \mid (p^n - 1)$ but $p' \nmid (p^m - 1)$, for every $1 \leq m < n$,

(ii) $p = 2, n = 1$ or 6,

(iii) p is a Mersenne prime and $n = 2$.

The following results are well-known and we will make use of them without giving more reference.

By Itô-Michler theorem, we know that a group G has a normal abelian Sylow p-subgroup if and only if $p \not\in \rho(G)$ (see [2]). By Pálfy’s Condition, if G is a solvable group and $\pi \subseteq \rho(G)$ such that $|\pi| \geq 3$, then there exist primes $p, q \in \pi$ and a degree $a \in \text{cd}(G)$ such that pq divides a ([7, Theorem 4.1]).
3. Proof of the main theorem

Note that the groups PSL$_2(2)$ and PSL$_2(3)$ are not simple, so we consider the groups PSL$_2(q)$ for $q \geq 4$.

Theorem 3.1. Let G be a finite group such that $\Delta(G) = \Delta(PSL_2(q))$ and $|G| = |PSL_2(q)|$, where $q = p^f \geq 4$ is a prime power. Then $G \cong PSL_2(q)$.

Proof. If $f = 1$ or 2, then the theorem is true by the main results of [4, 6]. So we may assume that $f \geq 3$.

First assume G is solvable. If $\pi(q - 1) \setminus \pi(q + 1) \neq \emptyset$ and $\pi(q + 1) \setminus \pi(q - 1) \neq \emptyset$, then using Pálly’s Condition we get a contradiction. Therefore we may assume there exists $\epsilon \in \{\pm 1\}$ such that $\pi(q + \epsilon) \subseteq \pi(q - \epsilon)$. Therefore, either $q = 9$; or $q = p$ is a Mersenne prime or a Fermat prime, which is a contradiction since $f \geq 3$. So from now on we assume G is nonsolvable.

Let N be the radical solvable subgroup of G, and M/N be a chief factor of G. So $M/N \cong S^m$, is the direct product of m copies of a nonabelian simple group S. Set $C/N = C_{G/N}(M/N)$. Then $C \leq G$, $MC/C \cong M/N$ and MC/C is the unique minimal normal subgroup of G/C.

We claim that $p \in \pi(M/N)$. On the contrary, assume $p \notin \pi(M/N)$. First suppose that $p \in \pi(C/N)$. By Itô-Michler theorem we have $\pi(C/N) = \rho(C/N)$, so by the fact that $C/N \times M/N \leq G/N$ we have p would be adjacent to all of the primes in $\pi(M/N)$, which is not possible, as p is an isolated vertex of $\Delta(G)$.

Let $p \in \pi(G/C)$. Note that $S^m \cong MC/C \leq G/C \hookrightarrow Aut(S^m)$. If $m > 1$, then by the main theorem of [8] we have $\Delta(G/C)$ is complete. Since $\rho(G/C) = \pi(G/C)$ by Itô-Michler theorem, it follows that p is adjacent to all primes in $\rho(M/N)$, which is impossible. Hence we may assume $m = 1$. Let T/C be a subgroup of G/C such that $|T/C : MC/C| = p$. By Lemma 2.1, there is at most one vertex in $\rho(S)$ which is not adjacent to p, which is a contradiction by the fact that p is an isolated vertex of $\Delta(G)$.

Therefore $p \in \rho(N)$. Let $\theta \in Irr(N)$ such that $p \mid \theta(1)$ and let $T \subseteq M$, such that $T/N \cong S$. Using [12, Lemma 4.2] we have either $\chi(1)/\theta(1)$ is divisible by two distinct primes in $\pi(T/N)$ for some $\chi \in Irr(T|\theta)$, or θ is extendible to $\theta_0 \in Irr(T)$ and $T/N \cong A_5$ or PSL$_2(8)$. In both cases, p is adjacent to some other prime in $\rho(S)$, a contradiction. Hence $p \in \pi(M/N)$, as we claimed.

Then $C = N$, since otherwise by the fact $C/N \times M/N \leq G/N$ we see that every primes in $\pi(M/N)$ would be adjacent to all primes in $\pi(C/N)$, which is impossible as p is isolated.

Note that M/N is a direct product of m copies of nonabelian simple group S. If $m > 1$, then p is adjacent to other vertices in $\rho(S) = \pi(S)$, which is a contradiction. So $m = 1$, and $M/N \cong S$. Since $\Delta(S)$ is disconnected, by [14, Theorem 6.1] we have $M/N \cong S \cong PSL_2(r^k)$, for some prime r and some integer k. Now since p is an isolated vertex of $\Delta(S)$, by considering the connected components of the character degree graph of PSL$_2(r^k)$ in [14, Theorem 5.2] we get that $r = p$; or p is odd, $r = 2$ and $\pi(2^k + \epsilon) = \{p\}$, for $\epsilon = \pm 1$.

First suppose that $M/N \cong PSL_2(p^k)$, where k is an integer. So $|S| = p^k(p^{2k} - 1)/(2, p^k - 1)$ and $\pi(p^{2k} - 1) \subseteq \pi(p^{2f} - 1)$. If $p^{2k} - 1$ has a primitive prime divisor, then it is easy to see that k divides f.
If $p^{2k} - 1$ does not have a primitive prime divisor, then using Lemma 2.3, either $k = 1$ or $(k, p) = (3, 2)$, in both cases we get $k | f$. We claim that $k = f$. Arguing by contradiction, suppose that $k < f$.

Assume $t \in \rho(G) \setminus \rho(S)$. In the following we prove that t is adjacent to all primes in $\pi(p^{2k} - 1)$. Let $t \in \pi(G/N) = \rho(G/N)$, then by the fact that $t \nmid |S|$, it follows that t is a divisor of $|\text{Out}(\text{PSL}(2^k))|$. Therefore, by [13, Theorem A], t is adjacent to every divisor of $p^{2k} - 1$. So we may assume $t \in \rho(G) \setminus \rho(G/N) \subseteq \rho(N)$. Let θ be an irreducible character of N such that t divides $\theta(1)$. Assume θ is not M-invariant. So $I = I_M(\theta) < M$. We know that every element of $\text{cd}(M|\theta)$ is divided by $|M : I|\theta(1)$, by Clifford’s corresponding theorem. Since I/N is a proper subgroup of $M/N \cong \text{PSL}(2^k)$, there exists a maximal subgroup T/N of M/N such that $I/N \leq T/N \leq M/N$. So $|M : T|\theta(1)$ is a divisor of all of the elements in $\text{cd}(M|\theta)$. By [1, Hauptsatz II.8.27], the maximal subgroups of $\text{PSL}(2^k)$ are:

$$C_2^k \times C_{2^k-1}, D_{2(2^k-1)}, D_{2(2^k+1)}, \text{PGL}(2^k),$$

where $k/b = n \geq 2$ is a prime, and the maximal subgroups of $\text{PSL}(p^k)$, where p is an odd prime, are $C_p \times C_{(p^k-1)/2}$, D_{p^k+1} for $p^k \geq 13$, D_{p^k+1} for $p^k \neq 7, 9$, $\text{PGL}(p^k)$ where $k/b = 2$, $\text{PSL}(p^a)$ where $k/a = n > 2$ is a prime, A_5 for $p^k \equiv \pm 1 \pmod{10}$, where either $k = 1$ or $k = 2$ and $p \equiv \pm 3 \pmod{10}$, A_4 for $p^k = p \equiv \pm 3 \pmod{8}$ and $p^k \neq \pm 1 \pmod{10}$, S_4 for $p^k = p \equiv \pm 1 \pmod{8}$.

Note that if $|M : T|$ is divided by p, then p is adjacent to t which is not possible. So the only possibility is $|M : T| = p^k + 1$. Therefore, t is adjacent to all primes in $\pi(p^k + 1)$. Note that in this case T/N is a Frobenius group with Frobenius kernel of order p^k and a cyclic Frobenius complement of order $(p^k - 1)/(2, p - 1)$. Since $p \mid |M : I|$, it is easy to see that either $|I/N| = p^k$, or $I/N \cong K/N \rtimes H/N$, where K/N is of order p^k, $(|K/N|, |H/N|) = 1$ and all of Sylow subgroups of H/N are cyclic. If $|I/N| = p^k$, then $|M : I| = (p^{2k} - 1)/(2, p - 1)$, and by the fact that every element of $\text{cd}(M|\theta)$ is divided by $|M : I|\theta(1)$, we get that t is adjacent to all primes in $\pi(p^{2k} - 1)$ as required. So assume that $|I/N| \cong K/N \rtimes H/N$, where K/N is of order p^k, $(|K/N|, |H/N|) = 1$ and all of Sylow subgroups of H/N are cyclic. Now using Lemma 2.2, we have t is adjacent either to p or to all primes in $\pi((p^k - 1)/s)$ where $s = |T : I| \geq 1$. Since p is an isolated vertex of $\Delta(G)$, we get the first case is not possible and so t is adjacent to all primes in $\pi((p^k - 1)/s)$ where $s = |T : I|$. On the other hand, we have t is adjacent to all prime divisors of $|M : I| = s(p^k + 1)$, so t is adjacent to all primes in $\pi(p^{2k} - 1)$. Hence we get our desired result.

So we may assume θ is M-invariant. If θ is extendible to M, then using Gallagher’s theorem we get t is adjacent to p, a contradiction. So θ is not extendible to M. If $p = 2$, then since $\text{PSL}(2, 2^k)$ has trivial Schur multiplier, it follows from [3, Theorem 11.7] that θ is extendible to M, which is a contradiction. So p is odd. If $p^k \neq 9$, then the Schur cover of $\text{PSL}(2^k)$ is $\text{SL}(2^k)$. By the theory of character triple isomorphisms in [3, Chapter 11], we deduce that G has an irreducible character whose degree is divisible by $t(p^k \pm 1)$, which is our desired result. Now assume that $p^k = 9$. Then (M, N, θ) is character triple isomorphic to the triple (L, A, λ) by [3, Chapter 11], where L and A are Schur cover and Schur multiplier of $\text{PSL}(9)$, respectively, and $\lambda \in \text{Irr}(A)$ is nontrivial. Then for any $\chi \in \text{Irr}(L|\lambda)$, we have $\theta(1)\chi(1)/\lambda(1) = \theta(1)\chi(1) \in \text{cd}(M|\theta)$. Since 3 is an isolated vertex of $\Delta(G)$, we
deduce that $3 \nmid \chi(1)$, for every $\chi \in \operatorname{Irr}(L|\lambda)$. So, it is easy to get by GAP that $\chi(1) \in \{4, 5, 8, 10\}$. Therefore, $|\operatorname{PSL}_2(9)| = |L : A| = \lambda^L(1) = \sum_{i=1}^d f_i \chi_i(1)$, for some integers f_i. By an easy computation, there exists $\chi_i, \chi_j \in \operatorname{Irr}(L|\lambda)$ such that $2 \mid \chi_i(1)$ and $5 \mid \chi_j(1)$. So by the above argument t is adjacent to all primes in $\pi(9^2 - 1) = \{2, 5\}$, as required.

Now assume $p^f - 1$ and $p^{2f} - 1$ have primitive prime divisors and we denote those numbers by x and y, respectively. By above discussion we have both x and y are adjacent to all primes in $\pi(p^{2k} - 1)$. Hence $\pi(p^{2k} - 1) = \{2\}$, which implies that $k = 1$ and $p = 3$. So M/N is solvable which is not possible.

So we may assume that either $p^f - 1$ or $p^{2f} - 1$ does not have a primitive prime divisor. Since $f \geq 3$, we have either $p = 2$ and $f = 3$; or $p = 2$ and $f = 6$.

If the first case occurs, then $k = 1$, which implies that M/N is a solvable group, a contradiction. If the last case occurs, then either $k = 2$ or $k = 3$ and $p^{2f} - 1$ has a primitive prime divisor that we call it y. Then y would be adjacent to all primes $2^{2k} - 1$ and so y is adjacent to $3 \in \pi(p^f - 1)$, a contradiction. Therefore $f = k$ and our claim is proved.

So $S \cong \operatorname{PSL}_2(q)$. Now by the hypothesis $|G| = |\operatorname{PSL}_2(q)|$, we get that $N = 1$ and $G = M \cong \operatorname{PSL}_2(q)$, as required.

Now suppose that p is odd, $M/N \cong \operatorname{PSL}_2(2^k)$ and $\pi(2^k + \epsilon) = \{p\}$, for an integer k and $\epsilon = \pm 1$. Therefore by looking at the character degree graph of $\operatorname{PSL}_2(q)$ we have $\pi(2^{(2k - \epsilon)}) \subseteq \pi(p^f + \nu)$, for $\nu = \pm 1$. First assume that there exists $t \not\mid \pi(p^f - \nu)$. So $t \not\mid \rho(G) \setminus \rho(S)$. If $t \mid \rho(G/N) = \rho(G/N)$, then since $t \mid |M/N|$ we have t is a divisor of $|\operatorname{Out}(\operatorname{PSL}_2(2^k))|$. So by [13, Theorem A], one can get that t is adjacent to every prime divisors of $2^{2k} - 1$, which contradicts the fact that $\pi(2^k + \epsilon) = \{p\}$ and $\pi(2^k - \epsilon) \subseteq \pi(p^f + \nu)$. So $t \mid \rho(G) \setminus \rho(G/N) \subseteq \rho(N)$. Let θ be an irreducible character of N such that $t \mid \theta(1)$. Assume θ is M-invariant. Since also $\operatorname{PSL}_2(2^k)$ has trivial Schur multiplier, it follows from [3, Theorem 11.7] that θ is extendible to M. Then by Gallagher’s theorem we get that t is adjacent to p, which is impossible. So we may assume θ is not M-invariant. Let $I = I_M(\theta) < M$. By Clifford’s corresponding theorem, every element of $\operatorname{cd}(M|\theta)$ is divisible by $|I : I|\theta(1)$. Suppose that T/N is a maximal subgroup of M/N such that $I/N \leq T/N \leq M/N$. So every element of $\operatorname{cd}(M|\theta)$ is divisible by $|M : T|\theta(1)$. By considering the maximal subgroups of $\operatorname{PSL}_2(2^k)$, it follows that t is adjacent either to p; or to an odd prime divisor of $2^k - \epsilon$, a contradiction.

Therefore $\pi(p^f - \nu) = \{2\}$, and consequently $p^f - 1$ or $p^{2f} - 1$ do not have primitive prime divisors. Since p is odd, Lemma 2.3 implies that $f = 1, 2$, which contradicts our assumption $f \geq 3$. Hence this case is impossible and the theorem is proved.

\[\square\]

4. Acknowledgements

The authors are grateful to the referee for very careful reading of the manuscript and his or her helpful comments.
REFERENCES

Z. Akhlaghi
Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 15914, Tehran, Iran
Email: z_akhlaghi@aut.ac.ir

M. Khatami
Department of Mathematics, University of Isfahan, Isfahan, 81746-73441, Isfahan, Iran
Email: m.khatami@sci.ui.ac.ir

B. Khosravi
Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 15914, Tehran, Iran
Email: khosravibbb@yahoo.com