DIFFERENCE BASES IN DIHEDRAL GROUPS

TARAS BANAKH AND VOLODYMYR GAVRYLKIV

Communicated by Attila Maroti

Abstract. A subset B of a group G is called a difference basis of G if each element $g \in G$ can be written as the difference $g = ab^{-1}$ of some elements $a, b \in B$. The smallest cardinality $|B|$ of a difference basis $B \subseteq G$ is called the difference size of G and is denoted by $\Delta[G]$. The fraction $\delta[G] := \Delta[G]/\sqrt{|G|}$ is called the difference characteristic of G. We prove that for every $n \in \mathbb{N}$ the dihedral group D_{2n} of order $2n$ has the difference characteristic $\sqrt{2} \leq \delta[D_{2n}] \leq \frac{48}{\sqrt{805}} \approx 1.983$. Moreover, if $n \geq 2 \cdot 10^{15}$, then $\delta[D_{2n}] < \frac{4}{\sqrt{8}} \approx 1.633$. Also we calculate the difference sizes and characteristics of all dihedral groups of cardinality ≤ 80.

1. Introduction

A subset B of a group G is called a difference basis for a subset $A \subseteq G$ if each element $a \in A$ can be written as $a = xy^{-1}$ for some $x, y \in B$. The smallest cardinality of a difference basis for A is called the difference size of A and is denoted by $\Delta[A]$. For example, the set $\{0, 1, 4, 6\}$ is a difference basis for the interval $A = [-6, 6] \cap \mathbb{Z}$ witnessing that $\Delta[A] \leq 4$.

The definition of a difference basis B for a set A in a group G implies that $|A| \leq |B|^2$ and gives a lower bound $\sqrt{|A|} \leq \Delta[A]$. The fraction

$$\delta[A] := \frac{\Delta[A]}{\sqrt{|A|}} \geq 1$$

is called the difference characteristic of A.

MSC(2010): Primary: 05B10; Secondary: 05E15, 20D60.
Keywords: dihedral group, difference basis, difference characteristic.
Received: 12 April 2017, Accepted: 08 August 2017.
*Corresponding author.

http://dx.doi.org/10.22108/ijgt.2017.21612
For a real number x we put

$$[x] = \min\{n \in \mathbb{Z} : n \geq x\} \text{ and } \lceil x \rceil = \max\{n \in \mathbb{Z} : n \leq x\}.$$

The following proposition is proved in [3, 1.1].

Proposition 1. Let G be a finite group. Then

1. $$\frac{1+\sqrt{4|G|-3}}{2} \leq \Delta[G] \leq \left\lceil \frac{|G|+1}{2} \right\rceil,$$
2. $$\Delta[G] \leq \Delta[H] \cdot \Delta[G/H] \text{ and } \partial[G] \leq \partial[H] \cdot \partial[G/H] \text{ for any normal subgroup } H \subset G;$$
3. $$\Delta[G] \leq |H| + |G/H| - 1 \text{ for any subgroup } H \subset G.$$

In [10] Kozma and Lev proved (using the classification of finite simple groups) that each finite group G has difference characteristic $\bar{\partial}[G] \leq \frac{4}{\sqrt{3}} \approx 2.3094$.

In this paper we shall evaluate the difference characteristics of dihedral groups and prove that each dihedral group D_{2n} has $\bar{\partial}[D_{2n}] \leq \frac{48}{\sqrt{896}} \approx 1.983$. Moreover, if $n \geq 2 \cdot 10^{15}$, then $\partial[D_{2n}] < \frac{4}{\sqrt{6}} \approx 1.633$.

We recall that the dihedral group D_{2n} is the isometry group of a regular n-gon. The dihedral group D_{2n} contains a normal cyclic subgroup of index 2. A standard model of a cyclic group of order n is the multiplicative group

$$C_n = \{z \in \mathbb{C} : z^n = 1\}$$

of n-th roots of 1. The group C_n is isomorphic to the additive group of the ring $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$.

Difference bases have applications in the study of structure of superextensions of groups, see [1, 3].

A subset B of a group G is called a basis of G if each element $g \in G$ can be written as $g = ab$ for some $a, b \in B$. Bases in dihedral groups were studied in [7].

Theorem 2. For any numbers $n, m \in \mathbb{N}$ the dihedral group D_{2nm} has the difference size

$$2\sqrt{nm} \leq \Delta[D_{2nm}] \leq \Delta[D_{2n}] \cdot \Delta[C_m]$$

and the difference characteristic $\sqrt{2} \leq \bar{\partial}[D_{2nm}] \leq \bar{\partial}[D_{2n}] \cdot \bar{\partial}[C_m]$.

Proof. It is well-known that the dihedral group D_{2nm} contains a normal cyclic subgroup of order nm, which can be identified with the cyclic group C_{nm}. The subgroup $C_m \subset C_{nm}$ is normal in D_{2nm} and the quotient group D_{2nm}/C_m is isomorphic to D_{2n}. Applying Proposition 1(2), we obtain the upper bounds $\Delta[D_{2n}] \leq \Delta[D_{2nm}/C_m] \cdot \Delta[C_m] = \Delta[D_{2n}] \cdot \Delta[C_m]$ and $\bar{\partial}[D_{2nm}] \leq \bar{\partial}[D_{2n}] \cdot \bar{\partial}[C_m]$.

Next, we prove the lower bound $2\sqrt{nm} \leq \Delta[D_{2nm}]$. Fix any element $s \in D_{2nm} \setminus C_{nm}$ and observe that $s = s^{-1}$ and $xs^{-1} = x^{-1}$ for all $x \in C_{nm}$. Fix a difference basis $D \subset D_{2nm}$ of cardinality $|D| = \Delta[D_{2nm}]$ and write D as the union $D = A \cup sB$ for some sets $A, B \subset C_{nm} \subset D_{2nm}$. We claim that $AB^{-1} = C_{nm}$. Indeed, for any $x \in C_{nm}$ we get $xs \in sC_{nm} \cap (A \cup sB)(A \cup sB)^{-1} = AB^{-1}s^{-1} \cup sBA^{-1}$ and hence

$$x \in AB^{-1}s^{-1} \cup sBA^{-1} = AB^{-1} \cup B^{-1}\ A = AB^{-1}.$$
So, $C_{nm} = AB^{-1}$ and hence $nm \leq |A| \cdot |B|$. Then $\Delta[D_{2nm}] = |A| + |B| \geq \min\{l + k : l, k \in \mathbb{N}, \ l k \geq nm\} \geq 2\sqrt{nm}$ and $\delta[D_{2nm}] = \frac{\Delta[D_{2nm}]}{\sqrt{2nm}} \geq \frac{2\sqrt{nm}}{\sqrt{2nm}} = \sqrt{2}$.

Theorem 5. If $\Delta[D_{2nm}] = |A| + |B| \geq \min\{l + k : l, k \in \mathbb{N}, \ l k \geq nm\} \geq 2\sqrt{nm}$ and $\delta[D_{2nm}] = \frac{\Delta[D_{2nm}]}{\sqrt{2nm}} \geq \frac{2\sqrt{nm}}{\sqrt{2nm}} = \sqrt{2}$.

Corollary 3. For any number $n \in \mathbb{N}$ the dihedral group D_{2n} has the difference size $2\sqrt{n} \leq \Delta[D_{2n}] \leq 2 \cdot \Delta[C_n]$ and the difference characteristic $\sqrt{2} \leq \delta[D_{2n}] \leq \sqrt{2} \cdot \delta[C_n]$.

The difference sizes of finite cyclic groups were evaluated in [2] with the help of the difference sizes of the order-intervals $[1, n] \cap \mathbb{Z}$ in the additive group \mathbb{Z} of integer numbers. For a natural number $n \in \mathbb{N}$ by $\Delta[n]$ we shall denote the difference size of the order-interval $[1, n] \cap \mathbb{Z}$ and by $\delta[n] := \frac{\Delta[n]}{\sqrt{n}}$ its difference characteristic. The asymptotics of the sequence $(\delta[n])_{n=1}^{\infty}$ was studied by Rédei and Rényi [11], Leech [9] and Golay [8] who eventually proved that

$$\sqrt{2 + \frac{4}{3\pi}} < \sqrt{2 + \max_{0 < \varphi < 2\pi} \frac{2\sin(\varphi)}{\varphi + \pi}} \leq \lim_{n \to \infty} \delta[n] = \inf_{n \in \mathbb{N}} \delta[n] \leq \delta[6166] = \frac{128}{\sqrt{6166}} < \delta[6] = \sqrt{\frac{8}{3}}.$$

In [2] the difference sizes of the order-intervals $[1, n] \cap \mathbb{Z}$ were applied to give upper bounds for the difference sizes of finite cyclic groups.

Proposition 4. For every $n \in \mathbb{N}$ the cyclic group C_n has difference size $\Delta[C_n] \leq \Delta\left[\left\lceil \frac{n-1}{2} \right\rceil \right]$, which implies that

$$\limsup_{n \to \infty} \delta[C_n] \leq \frac{1}{\sqrt{2}} \inf_{n \in \mathbb{N}} \delta[n] \leq \frac{64}{\sqrt{3083}} < \frac{2}{\sqrt{3}}.$$

The following upper bound for the difference sizes of cyclic groups were proved in [2].

Theorem 5. For any $n \in \mathbb{N}$ the cyclic group C_n has the difference characteristic:

1. $\delta[C_n] \leq \delta[C_4] = \frac{3}{2}$;
2. $\delta[C_n] \leq \delta[C_2] = \delta[C_8] = \sqrt{2}$ if $n \neq 4$;
3. $\delta[C_n] \leq \frac{12}{\sqrt{73}} < \sqrt{2}$ if $n \geq 9$;
4. $\delta[C_n] \leq \frac{24}{\sqrt{293}} < \frac{12}{\sqrt{73}}$ if $n \geq 9$ and $n \neq 292$;
5. $\delta[C_n] < \frac{2}{\sqrt{3}}$ if $n \geq 2 \cdot 10^{15}$.

For some special numbers n we have more precise upper bounds for $\Delta[C_n]$. A number q is called a prime power if $q = p^k$ for some prime number p and some $k \in \mathbb{N}$.

The following theorem was derived in [2] from the classical results of Singer [13], Bose, Chowla [4], [5] and Rusza [12].

Theorem 6. Let p be a prime number and q be a prime power. Then

1. $\Delta[C_{q^2+q+1}] = q + 1$;
2. $\Delta[C_{q^2-1}] \leq q - 1 + \Delta[C_{q-1}] \leq q - 1 + \frac{3}{2}\sqrt{q-1}$;
3. $\Delta[C_{p^2-p}] \leq p - 3 + \Delta[C_p] + \Delta[C_{p-1}] \leq p - 3 + \frac{3}{2}(\sqrt{p} + \sqrt{p-1})$.

http://dx.doi.org/10.22108/ijgt.2017.21612
The following Table 1 of difference sizes and characteristics of cyclic groups C_n for $n \leq 100$ is taken from [2].

Table 1. Difference sizes and characteristics of cyclic groups C_n for $n \leq 100$.

<table>
<thead>
<tr>
<th>n</th>
<th>$\Delta[C_n]$</th>
<th>$\delta[C_n]$</th>
<th>n</th>
<th>$\Delta[C_n]$</th>
<th>$\delta[C_n]$</th>
<th>n</th>
<th>$\Delta[C_n]$</th>
<th>$\delta[C_n]$</th>
<th>n</th>
<th>$\Delta[C_n]$</th>
<th>$\delta[C_n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td>6</td>
<td>1.1766...</td>
<td>51</td>
<td>8</td>
<td>1.1202...</td>
<td>76</td>
<td>10</td>
<td>1.1470...</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.4142...</td>
<td>27</td>
<td>6</td>
<td>1.1547...</td>
<td>52</td>
<td>9</td>
<td>1.2480...</td>
<td>77</td>
<td>10</td>
<td>1.1396...</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1.1547...</td>
<td>28</td>
<td>6</td>
<td>1.1338...</td>
<td>53</td>
<td>9</td>
<td>1.2362...</td>
<td>78</td>
<td>10</td>
<td>1.1322...</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1.5</td>
<td>29</td>
<td>7</td>
<td>1.2998...</td>
<td>54</td>
<td>9</td>
<td>1.2247...</td>
<td>79</td>
<td>10</td>
<td>1.1250...</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1.3416...</td>
<td>30</td>
<td>7</td>
<td>1.2780...</td>
<td>55</td>
<td>9</td>
<td>1.2135...</td>
<td>80</td>
<td>11</td>
<td>1.2298...</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1.2247...</td>
<td>31</td>
<td>6</td>
<td>1.0776...</td>
<td>56</td>
<td>9</td>
<td>1.2026...</td>
<td>81</td>
<td>11</td>
<td>1.2222...</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1.1338...</td>
<td>32</td>
<td>7</td>
<td>1.2374...</td>
<td>57</td>
<td>8</td>
<td>1.0596...</td>
<td>82</td>
<td>11</td>
<td>1.2147...</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1.4142...</td>
<td>33</td>
<td>7</td>
<td>1.2185...</td>
<td>58</td>
<td>9</td>
<td>1.1817...</td>
<td>83</td>
<td>11</td>
<td>1.2074...</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1.3333...</td>
<td>34</td>
<td>7</td>
<td>1.2004...</td>
<td>59</td>
<td>9</td>
<td>1.1717...</td>
<td>84</td>
<td>11</td>
<td>1.2001...</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>1.2649...</td>
<td>35</td>
<td>7</td>
<td>1.1832...</td>
<td>60</td>
<td>9</td>
<td>1.1618...</td>
<td>85</td>
<td>11</td>
<td>1.1931...</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>1.2060...</td>
<td>36</td>
<td>7</td>
<td>1.1666...</td>
<td>61</td>
<td>9</td>
<td>1.1523...</td>
<td>86</td>
<td>11</td>
<td>1.1861...</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>1.1547...</td>
<td>37</td>
<td>7</td>
<td>1.1507...</td>
<td>62</td>
<td>9</td>
<td>1.1430...</td>
<td>87</td>
<td>11</td>
<td>1.1793...</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>1.1094...</td>
<td>38</td>
<td>8</td>
<td>1.2977...</td>
<td>63</td>
<td>9</td>
<td>1.1338...</td>
<td>88</td>
<td>11</td>
<td>1.1726...</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>1.3363...</td>
<td>39</td>
<td>7</td>
<td>1.1208...</td>
<td>64</td>
<td>9</td>
<td>1.125...</td>
<td>89</td>
<td>11</td>
<td>1.1659...</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>1.2909...</td>
<td>40</td>
<td>8</td>
<td>1.2649...</td>
<td>65</td>
<td>9</td>
<td>1.1163...</td>
<td>90</td>
<td>11</td>
<td>1.1595...</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>1.25...</td>
<td>41</td>
<td>8</td>
<td>1.2493...</td>
<td>66</td>
<td>10</td>
<td>1.2309...</td>
<td>91</td>
<td>10</td>
<td>1.0482...</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>1.2126...</td>
<td>42</td>
<td>8</td>
<td>1.2344...</td>
<td>67</td>
<td>10</td>
<td>1.2216...</td>
<td>92</td>
<td>11</td>
<td>1.1468...</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>1.1785...</td>
<td>43</td>
<td>8</td>
<td>1.2199...</td>
<td>68</td>
<td>10</td>
<td>1.2126...</td>
<td>93</td>
<td>12</td>
<td>1.2443...</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>1.1470...</td>
<td>44</td>
<td>8</td>
<td>1.2060...</td>
<td>69</td>
<td>10</td>
<td>1.2038...</td>
<td>94</td>
<td>12</td>
<td>1.2377...</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>1.3416...</td>
<td>45</td>
<td>8</td>
<td>1.1925...</td>
<td>70</td>
<td>10</td>
<td>1.1952...</td>
<td>95</td>
<td>12</td>
<td>1.2311...</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>1.0910...</td>
<td>46</td>
<td>8</td>
<td>1.1795...</td>
<td>71</td>
<td>10</td>
<td>1.1867...</td>
<td>96</td>
<td>12</td>
<td>1.2247...</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>1.2792...</td>
<td>47</td>
<td>8</td>
<td>1.1669...</td>
<td>72</td>
<td>10</td>
<td>1.1785...</td>
<td>97</td>
<td>12</td>
<td>1.2184...</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>1.2510...</td>
<td>48</td>
<td>8</td>
<td>1.1547...</td>
<td>73</td>
<td>9</td>
<td>1.0533...</td>
<td>98</td>
<td>12</td>
<td>1.2121...</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>1.2247...</td>
<td>49</td>
<td>8</td>
<td>1.1428...</td>
<td>74</td>
<td>10</td>
<td>1.1624...</td>
<td>99</td>
<td>12</td>
<td>1.2060...</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>1.2</td>
<td>50</td>
<td>8</td>
<td>1.1313...</td>
<td>75</td>
<td>10</td>
<td>1.1547...</td>
<td>100</td>
<td>12</td>
<td>1.2</td>
</tr>
</tbody>
</table>

http://dx.doi.org/10.22108/ijgt.2017.21612
Using Theorem 6(1), we shall prove that for infinitely many numbers \(n \) the lower and upper bounds given in Theorem 2 uniquely determine the difference size \(\Delta[D_{2n}] \) of \(D_{2n} \).

Theorem 7. If \(n = 1 + q + q^2 \) for some prime power \(q \), then

\[
\Delta[D_{2n}] = 2 \cdot \Delta[C_n] = \left\lceil 2\sqrt{n} \right\rceil = \left\lceil \sqrt{2[D_{2n}]} \right\rceil = 2 + 2q.
\]

Proof. By Theorem 6(1), \(\Delta[C_n] = 1 + q \). Since

\[
2\sqrt{q^2 + q + 1} = 2\sqrt{n} \leq \Delta[D_{2n}] \leq \Delta[D_2] \cdot \Delta[C_n] = 2 \cdot \Delta[C_n] = 2 + 2q,
\]

it suffices to check that \((2 + 2q) - 2\sqrt{q^2 + q + 1} < 1\), which is equivalent to \(\sqrt{q^2 + q + 1} > q + \frac{1}{2}\) and to \(q^2 + q + 1 > q^2 + q + \frac{1}{4}\). \(\square\)

A bit weaker result holds also for the dihedral groups \(D_{8(q^2+q+1)} \).

Proposition 8. If \(n = 1 + q + q^2 \) for some prime power \(q \), then

\[
4q + 3 \leq \Delta[D_{8n}] \leq 4q + 4.
\]

Proof. By Theorem 6(1), \(\Delta[C_n] = 1 + q \). Since \(\Delta[D_8] = 4 \) (see Table 2), by Theorem 2,

\[
4\sqrt{q^2 + q + 1} = 2\sqrt{4n} \leq \Delta[D_{8n}] \leq \Delta[D_8] \cdot \Delta[C_n] = 4(1 + q).
\]

To see that \(4q + 3 \leq \Delta[D_{8n}] \leq 4q + 4\), it suffices to check that \((4 + 4q) - 4\sqrt{q^2 + q + 1} < 2\), which is equivalent to \(\sqrt{q^2 + q + 1} > q + \frac{1}{2}\) and to \(q^2 + q + 1 > q^2 + q + \frac{1}{4}\). \(\square\)

In Table 2 we present the results of computer calculation of the difference sizes and characteristics of dihedral groups of order \(\leq 80 \). In this table \(\text{lb}[D_{2n}] := \left\lceil \sqrt{4n} \right\rceil \) is the lower bound given in Theorem 2. With the boldface font we denote the numbers \(2n \in \{14, 26, 42, 62\} \), equal to \(2(q^2 + q + 1)\) for a prime power \(q \). For these numbers we know that \(\Delta[D_{2n}] = \text{lb}[D_{2n}] = 2q + 2 \). For \(q = 2 \) and \(n = q^2 + q + 1 = 7 \) the table shows that \(\Delta[D_{56}] = \Delta[D_{8n}] = 11 = 4q + 3 \), which means that the lower bound \(4q + 3 \) in Proposition 8 is attained.

http://dx.doi.org/10.22108/ijgt.2017.21612
Table 2. Difference sizes and characteristics of dihedral groups D_{2n} for $2n \leq 80$.

<table>
<thead>
<tr>
<th>$2n$</th>
<th>$lb[D_{2n}]$</th>
<th>$\Delta[D_{2n}]$</th>
<th>$2\Delta[C_n]$</th>
<th>$\text{avg}[D_{2n}]$</th>
<th>$2n$</th>
<th>$lb[D_{2n}]$</th>
<th>$\Delta[D_{2n}]$</th>
<th>$2\Delta[C_n]$</th>
<th>$\text{avg}[D_{2n}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1.4142...</td>
<td>42</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1.5430...</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1.5</td>
<td>44</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>1.5075...</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1.6329...</td>
<td>46</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>1.6218...</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>1.4142...</td>
<td>48</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>1.4433...</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>1.5811...</td>
<td>50</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>1.5556...</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>1.4433...</td>
<td>52</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>1.5254...</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>1.6035...</td>
<td>54</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>1.6329...</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>1.5</td>
<td>56</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>1.4699...</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1.6499...</td>
<td>58</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>1.5756...</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>1.5652...</td>
<td>60</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>1.5491...</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1.7056...</td>
<td>62</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1.5240...</td>
</tr>
<tr>
<td>24</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>1.4288...</td>
<td>64</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>1.5</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1.5689...</td>
<td>66</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>1.6001...</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>1.5118...</td>
<td>68</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>1.5764...</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>1.4605...</td>
<td>70</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>1.4342...</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>1.5909...</td>
<td>72</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>1.5320...</td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>1.5434...</td>
<td>74</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>1.6274...</td>
</tr>
<tr>
<td>36</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>1.5</td>
<td>76</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>1.6059...</td>
</tr>
<tr>
<td>38</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>1.6222...</td>
<td>78</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>1.5851...</td>
</tr>
<tr>
<td>40</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>1.4230...</td>
<td>80</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>1.5652...</td>
</tr>
</tbody>
</table>

Theorem 9. For any number $n \in \mathbb{N}$ the dihedral group D_{2n} has the difference characteristic

$$\sqrt{2} \leq \text{avg}[D_{2n}] \leq \frac{48}{\sqrt{586}} \approx 1.983.$$

Moreover, if $n \geq 2 \cdot 10^{15}$, then $\text{avg}[D_{2n}] < \frac{4}{\sqrt{6}} \approx 1.633$.

Proof. By Corollary 3, $\sqrt{2} \leq \text{avg}[D_{2n}] \leq \sqrt{2} \cdot \text{avg}[C_n]$. If $n \geq 9$ and $n \neq 292$, then $\text{avg}[C_n] \leq \frac{24}{\sqrt{293}}$ by Theorem 5(4), and hence $\text{avg}[D_{2n}] \leq \sqrt{2} \cdot \text{avg}[C_n] \leq \sqrt{2} \cdot \frac{24}{\sqrt{293}} = \frac{48}{\sqrt{586}}$. If $n = 292$, then known values $\text{avg}[C_{73}] = \frac{9}{\sqrt{73}}$ (given in Table 1), $\text{avg}[D_8] = \frac{4}{\sqrt{8}} = \sqrt{2}$ (given in Table 2) and Theorem 2 yield the upper bound

$$\text{avg}[D_{292}] = \text{avg}[D_{8,73}] \leq \text{avg}[D_8] \cdot \text{avg}[C_{73}] = \sqrt{2} \cdot \frac{9}{\sqrt{73}} < \frac{48}{\sqrt{586}}.$$

http://dx.doi.org/10.22108/ijgt.2017.21612
Analyzing the data from Table 2, one can check that $\delta[D_{2n}] \leq \frac{48}{\sqrt{586}} \approx 1.983$ for all $n \leq 8$. If $n \geq 2 \cdot 10^{15}$, then $\delta[C_n] < \frac{2}{\sqrt{n}}$ by Theorem 5(5), and hence

$$\delta[D_{2n}] \leq \sqrt{2} \cdot \delta[C_n] < \frac{4}{\sqrt{6}}.$$

\[\blacksquare \]

Question 10. Is $\sup_{n \in \mathbb{N}} \delta[D_{2n}] = \delta[D_{22}] = \frac{8}{\sqrt{22}} \approx 1.7056$?

To answer Question 10 affirmatively, it suffices to check that $\delta[D_{2n}] \leq \frac{8}{\sqrt{22}}$ for all $n < 1212464$.

Proposition 11. The inequality $\delta[D_{2n}] \leq \sqrt{2} \cdot \delta[C_n] \leq \frac{8}{\sqrt{22}}$ holds for all $n \geq 1212464$.

Proof. It suffices to prove that $\delta[C_n] \leq \frac{4}{\sqrt{n}}$ for all $n \geq 1212464$. To derive a contradiction, assume that $\delta[C_n] > \frac{4}{\sqrt{n}}$ for some $n \geq 1212464$. Let $(q_k)_{k=1}^\infty$ be an increasing enumeration of prime powers. Let $k \in \mathbb{N}$ be the unique number such that $12q_k^2 + 14q_k + 15 < n \leq 12q_{k+1}^2 + 14q_{k+1} + 15$. By Corollary 4.9 of [2], $\Delta[C_n] \leq 4(q_k+1)$. The inequality $\delta[C_n] > \frac{4}{\sqrt{n}}$ implies

$$4(q_k+1) \geq \Delta[C_n] > \frac{4}{\sqrt{n}} \sqrt{n} \geq \frac{4}{\sqrt{n}} \sqrt{12q_k^2 + 14q_k + 16}.$$

By Theorem 1.9 of [6], if $q_k \geq 3275$, then $q_{k+1} \leq q_k + \frac{q_k}{2 \ln^2(q_k)}$. On the other hand, using WolframAlpha computational knowledge engine it can be shown that the inequality $1 + x + \frac{x}{2 \ln^2(x)} \leq \frac{1}{\sqrt{11}} \sqrt{12x^2 + 14x + 16}$ holds for all $x \geq 43$. This implies that $q_k < 3275$.

Analyzing the table\(^1\) of (maximal gaps between) primes, it can be shows that $11(q_{k+1}+1)^2 \leq 12q_k^2 + 14q_k + 16$ if $q_k \geq 331$. So, $q_k \leq 317$, $q_{k+1} \leq 331$ and $11 \cdot (q_{k+1}+1)^2 = 11 \cdot 332^2 = 1212464 \leq n$, which contradicts $4(q_k+1) > \frac{4}{\sqrt{n}} \sqrt{n}$.

\[\blacksquare \]

References

\(^1\)See https://primes.utm.edu/notes/GapsTable.html and https://primes.utm.edu/lists/small/1000.txt

Taras Banakh

Ivan Franko National University of Lviv (Ukraine), and

Institute of Mathematics, Jan Kochanowski University in Kielce (Poland)

Email: t.o.banakh@gmail.com

Volodymyr Gavrylkiv

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

Email: vgavrylkiv@gmail.com

http://dx.doi.org/10.22108/ijgt.2017.21612