CHARACTERIZATION OF A_5 AND $PSL(2,7)$ BY SUM OF ELEMENT ORDERS

S. M. JAFARIAN AMIRI

Communicated by Bijan Taeri

Abstract. Let G be a finite group. We denote by $\psi(G)$ the integer $\sum_{g \in G} o(g)$, where $o(g)$ denotes the order of $g \in G$. Here we show that $\psi(A_5) < \psi(G)$ for every non-simple group G of order 60, where A_5 is the alternating group of degree 5. Also we prove that $\psi(PSL(2,7)) < \psi(G)$ for all non-simple groups G of order 168. These two results confirm the conjecture posed in [J. Algebra Appl., 10 No. 2 (2011) 187-190] for simple groups A_5 and $PSL(2,7)$.

1. Introduction

Let G be a finite group. We define the function

$$\psi(G) = \sum_{g \in G} o(g),$$

where $o(g)$ denotes the order of $g \in G$. We propose the following general question:

Question 1.1. What information about a group G can be obtained from $\psi(G)$ and $|G|$?

The starting point on studying the function ψ is in [1], where the maximum value of ψ on the groups of the same order is investigated. In fact it is proved that

Theorem 1.2. Let C be a cyclic group of order n. Then $\psi(G) < \psi(C)$ for all non-cyclic groups of order n.

MSC(2010): Primary: 20D60; Secondary: 20D06.

Keywords: Finite groups, simple group, element orders.

Received: 13 May 2012, Accepted: 17 October 2012.
It follows that the cyclic groups are determined by their orders and sum of element orders.

In general, the invariants $|G|$ and $\psi(G)$ do not determine G. For example, there are two non-isomorphic groups G_1 and G_2 of order 27 such that $\psi(G_1) = \psi(G_2)$.

Note that the function ψ is multiplicative, that is if G_1 and G_2 are two groups satisfying $\gcd(|G_1|, |G_2|) = 1$, then $\psi(G_1 \times G_2) = \psi(G_1)\psi(G_2)$.

Following Theorem 1.1, one can ask about the structure of groups having the minimum sum of element orders on all groups of the same order. In [2] it is proved that:

Theorem 1.3. Let G be a nilpotent group of order n. Then $\psi(G) \leq \psi(H)$ for every nilpotent group H of order n if and only if each Sylow subgroup of G is of prime exponent.

Theorem 1.4. Let n be a positive integer such that there exists a non-nilpotent group of order n. Then there exists a non-nilpotent group K of order n with the property that $\psi(K) < \psi(H)$ for every nilpotent group H of order n.

In other words the minimum value of $\psi(G)$ occurs on a non-nilpotent group, where G varies on all groups of the same order.

Also it is conjectured in [2] that:

Conjecture 1.5. Let S be a simple group. If G is a non-simple group of order $|S|$, then $\psi(S) < \psi(G)$.

In other words if n is a natural number such that there is a simple group of order n, then the minimum of ψ, on all groups of order n, occurs in a simple group. Here we confirm Conjecture 1.5 for A_5, the alternating group of degree 5, and $PSL(2, 7)$, the projective special linear group of 2×2 matrices over the field of order 7. It is hoped that the methods be useful for some other simple groups. Note that we determine A_5 and $PSL(2, 7)$ by their orders and sum of element orders.

Most of our notations are standard. If p is a prime, then $n_p = n_p(G)$ denotes the number of Sylow p-subgroups of G and the set of all Sylow p-subgroups of G is denoted by $Syl_p(G)$. If n is a positive integer, then C_n is a cyclic group of order n.

2. **Minimum of ψ on all groups of order 60**

It is well-known that A_5 has 15 elements of order 2, 20 elements of order 3 and 24 elements of order 5. Therefore $\psi(A_5) = 211$.

Theorem 2.1. Let G be any group of order 60. Then $\psi(G) \geq 211$ and $\psi(G) = 211$ if and only if $G \cong A_5$.

Proof. Since the order of G is 60, the number of Sylow 5-subgroups is 1 or 6 and $n_3 = 1$ or 10. If $n_3 = 1$ or $n_5 = 1$, then G contains a cyclic subgroup of order 15. Thus G contains at least 8 elements of order 15. Also G contains at least four elements of order 5 and at least two elements of order 3. So G contains at most 45 elements of order at least 2. Hence

$$\psi(G) \geq 1 + 45(2) + 2(3) + 4(5) + 8(15) = 236.$$
So we may assume that \(n_3 = 10 \) and \(n_5 = 6 \). Then \(G \) contains 20 elements of order 3 and 24 elements of order 5. If \(I = \{ x \in G | o(x) = 3 \text{ or } 5 \} \), then \(|I| = 44 \). Therefore if there exits an element of order greater than 2 in \(G \setminus I \), then \(\psi(G) > 211 \). So suppose that each non-identity element of \(G \setminus I \) has order 2 which implies that \(|C_G(x)| = 4 \) for every element of order 2. It yields that the intersection of two distinct Sylow 2-subgroups of \(G \) is trivial and so \(n_2 = 5 \). Hence \(G \) is isomorphic to a subgroup of \(S_5 \), the symmetric group on 5 letters. It follows that \(G \cong A_5 \). This completes the proof.

\[\square \]

Corollary 2.2. If \(G \) is a non-simple group of order 60, then \(\psi(G) > \psi(A_5) \).

3. **Minimum of \(\psi \) on all groups of order 168**

It is easy to check that \(PSL(2, 7) \) has 21 elements of order 2 and 42 elements of order 4, since \(PSL(2, 7) \) has 21 Sylow 2-subgroups isomorphic to \(D_8 \). Also \(PSL(2, 7) \) contains 56 elements of order 3 and 48 elements of order 7 because \(n_3 = 28 \) and \(n_7 = 8 \). Therefore \(\psi(PSL(2, 7)) = 715 \).

Lemma 3.1. Let \(G \) be a group of order 168. If \(G \) contains an element of order 21, then \(\psi(G) > 715 \).

Proof. Suppose first that \(G \) contains at least two cyclic subgroups of order 21. Then \(G \) has at least \(2\phi(21) = 24 \) elements of order 21 and so \(G \) contains at most 144 elements which are not of order 21. Therefore \(\psi(G) > 24(21) + 143(2) + 1 = 791 > 715 \).

Now suppose that \(G \) contains unique cyclic subgroup \(T \) of order 21. Then \(n_7(G) = 1 \) and \(n_3(G) = 1 \). It follows that

\[
\frac{G}{C_G(P)} \rightarrow Aut(C_7),
\]

where \(P \) is the Sylow 7-subgroup of \(G \). Therefore \(|C_G(P)| = 2^3 \cdot 3 \cdot 7 \text{ or } 2^2 \cdot 3 \cdot 7 \). In the former case \(P \) is a central subgroup of \(G \). It follows from [1, Corollary B] that \(\psi(G) = \psi(\frac{G}{P})\psi(P) > 715 \). If \(|C_G(P)| = 2^2 \cdot 3 \cdot 7 \), \(P \) is central in \(C_G(P) \) and so \(\psi(C_G(P)) = 43(24) > 715 \), as desired.

\[\square \]

Lemma 3.2. Let \(G \) be a group of order 168. If \(G \) contains no element of order 21 and \(n_7 = 8 \), then either \(\psi(G) > 715 \) or \(G \cong PSL(2, 7) \).

Proof. By hypothesis, \(K = N_G(P) = QP \), where \(P \in Syl_7(G) \) and \(Q \in Syl_3(G) \). Since \(n_3(K) = 7 \), \(n_3(G) \geq 7 \) and so \(n_3 = 7 \) or 28.

If the intersection of two conjugates \(K_1 \) and \(K_2 \) of \(K \) is trivial, then \(|K_1K_2| > 168 \), a contradiction. Therefore the intersection of any two conjugates of \(K \) has order 3 and since \(K \) has eight conjugates, \(n_3 = 28 \). This implies that \(N_G(Q) \cong S_3 \) or \(C_6 \).

If \(N_G(Q) \cong C_6 \), then \(G \) contains 56 elements of order 6 and so \(\psi(G) > 48(7) + 56(3) + 56(6) + 1 > 715 \).

If \(N_G(Q) \cong S_3 \), then \(C_G(Q) = Q \) and so the centralizer subgroup of any \(p \)-element is a \(p \)-subgroup for any prime \(p \). If \(n_2 \leq 7 \), then \(G \) contains at most 49 non-identity 2-elements. Since \(|G| = 168 \), there exists an element of \(G \) which is not a \(p \)-element, a contradiction. Hence \(n_2 = 21 \). If the intersection of any two distinct Sylow 2-subgroups is trivial, then \(|G| > 168 \). Therefore there exists \(x \in T_1 \cap T_2 \),
where $T_i \in \text{Syl}_2(G)$ for $i = 1, 2$. If T_1 is abelian then $|C_G(x)| > 8$, which is a contradiction. So T_1 is not abelian. It follows that $T_1 \cong D_8$ or Q_8. If $o(x) = 4$, then $C_G(x) = \langle x \rangle$ and so x has 42 conjugates in G. Now G has 48 elements of order 7, 56 elements of order 3 and 42 elements of order 4. This implies that G must have 21 elements of order 2. Thus in the latter case G has no non-trivial minimal normal subgroup and so G is simple. Therefore $G \cong \text{PSL}(2, 7)$. This completes the proof. \hfill \square

Lemma 3.3. Let G be a group of order 168. If G contains no element of order 21 and $n_7 = 1$, then $\psi(G) > 715$.

Proof. Suppose that P is the unique Sylow 7-subgroup of G. Then $|C_G(P)| = 2^3 \cdot 7$ or $2^2 \cdot 7$.

If $|C_G(P)| = 2^3 \cdot 7$, then $C_G(P) = P \times T$, where $T \in \text{Syl}_2(G)$. It follows that $n_2(G) = 1$, since $C_G(P)$ is normal in G. It yields that $\psi(C_G(P)) \geq 5 \cdot 43 = 215$. Since the order of each element in $G \setminus C_G(P)$ is at least 3 and $|G \setminus C_G(P)| = 112$, we have $\psi(G) \geq 215 + 112(3) > 715$.

Now suppose that $|C_G(P)| = 2^2 \cdot 7$. Then $C_G(P) = D \times P$, where $|D| = 4$. Since $C_G(P)$ is normal in G and D is characteristic in $C_G(P)$, D is normal in G. So D is the intersection of all Sylow 2-subgroups of G.

This is clear that $n_3 = 7$ or 28 and $n_2 = 7$ or 21. Set

$$E = \{x \in G | x \text{ is a non-identity 2-element} \},$$

and

$$S = \{x \in G | x \text{ is a non-identity 3-element} \}.$$

It follows that $|E| = 31$ or 87 and $|S| = 14$ or 56. Note that if $x \in G \setminus (E \cup S \cup P)$, then either $o(x) = 6$ or $o(x) \geq 12$. Also if $o(x) = 6$, then G contains $2n_3(G)$ elements of order 6.

If $D \cong C_4$, then $\psi(C_G(P)) = 473$. Since $|G \setminus C_G(P)| = 140$, $\psi(G) \geq 473 + 140(2) > 715$.

If $D \cong C_2 \times C_2$, then G has 18 elements of order 14. Now we consider four following cases:

1- If $|E| = 31$ and $|S| = 14$, then

$$\psi(G) \geq 31(2) + 14(3) + 6(7) + |G \setminus (E \cup S \cup P)|6 > 715.$$

2- If $|E| = 87$ and $|S| = 14$, then

$$\psi(G) \geq 87(2) + 14(3) + 6(7) + |G \setminus (E \cup S \cup P)|6 > 715.$$

3- If $|E| = 31$ and $|S| = 56$, then

$$\psi(G) \geq 31(2) + 56(3) + 6(7) + |G \setminus (E \cup S \cup P)|6 > 715.$$

4- If $|E| = 87$ and $|S| = 56$, then G has 21 Sylow 2-subgroups. Suppose that $T \in \text{Syl}_2(G)$ and $T \cong C_2 \times C_2 \times C_2$. If $x \in D$, then $C_G(x) = TP$, since $|E \cup S \cup P| = 150$ and G has 18 elements of order 14. Therefore $n_2(C_G(x)) = 7$. This is a contradiction because $C_G(x)$ contains all 21 Sylow 2-subgroups of G. Hence T is not isomorphic to $(C_2)^3$. Thus each Sylow 2-subgroup of G contains at least one cyclic subgroup of order 4. Since D is isomorphic to $C_2 \times C_2$, the intersection of any two
distinct Sylow 2-subgroups of G does not have any element of order 4. It follows that G contains 21 cyclic subgroups of order 4. Thus

$$\psi(G) \geq 87(2) + 56(3) + 18(14) + 42(4) > 715.$$

This completes the proof. \Box

Theorem 3.4. Let G be any group of order 168. Then $\psi(G) \geq 715$.

Proof. It follows from Lemmas 3.1, 3.2 and 3.3. \Box

Corollary 3.5. Let G be any non-simple group of order 168. Then $\psi(G) > \psi(PSL(2,7))$.

Proof. If G satisfies the hypothesis of Lemmas 3.1 or 3.3, then the result holds. If G satisfies the hypothesis of Lemma 3.2, then $\psi(G) > 715$, since G is not simple. \Box

References

Seyyed Majid Jafarian Amiri

Department of Mathematics, Faculty of Sciences, University of Zanjan, P.O.Box 45195-313, Zanjan, Iran

Email: sm.jafarian@znu.ac.ir

Email: sm.jafariana110@gmail.com